

Simulation-Based Approximate Policy Iteration with

Generalized Logistic Functions

Journal: INFORMS Journal on Computing

Manuscript ID: JOC-2013-12-OA-238

Manuscript Type: Original Article

Date Submitted by the Author: 16-Dec-2013

Complete List of Authors: Sauré, Antoine; Sauder School of Business, University of British Columbia,
Patrick, Jonathan; University Of Ottawa, Telfer School of Management
Puterman, Martin; Sauder School of Business, University of British
Columbia,

Keywords:
Markov decision processes, Approximate dynamic programming, Logistic
approximation, Simulation, Patient appointment scheduling

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

Submitted to INFORMS Journal on Computing
manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Simulation-Based Approximate Policy Iteration with
Generalized Logistic Functions

Antoine Sauré
Sauder School of Business, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

antoine.saure@sauder.ubc.ca

Jonathan Patrick
Telfer School of Management, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

patrick@telfer.uottawa.ca

Martin L. Puterman
Sauder School of Business, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

martin.puterman@sauder.ubc.ca

We present an approximate dynamic programming method based on simulation, policy iteration, a post-

decision state formulation and a logistic value function approximation. This method was developed as part

of our efforts to determine whether non-linear value function approximation architectures could provide cost-

effective policies for advance patient scheduling problems, and as a way of identifying the main advantages

and disadvantages of using simulation versus linear programming to approximately solve dynamic capacity

allocation problems. We first apply the proposed method to a queueing problem and then study a more

practical application based on an appointment scheduling problem in which patients with different priorities

must be assigned service dates prior to realizing future demand. We investigate the quality and practical

implications of the resulting patient scheduling policies using simulation, and compare their performance

to that of four other policies. Patient scheduling policies obtained by the new method not only depend on

the number of appointments already booked on each given day but also on the overall system workload.

In particular, these policies provide lower discounted cost values and shorter average wait times for lower

priority patients than policies directly obtained using a linear programming approach and an affine value

function approximation in the pre-decision state variables.

Key words : Markov decision processes; Approximate dynamic programming; Logistic approximation;

Simulation; Patient appointment scheduling.

1. Introduction

Sequential decision-making problems occur in a wide variety of complex systems. The

determination of optimal policies for such systems typically requires consideration of an

1

Page 1 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

extremely large number of scenarios and alternative courses of action. Dynamic program-

ming offers a mathematical formalization of the trade-off between immediate and future

cost for alternative courses of action for such problems. However, it is well known that

for many problems the computational requirements of dynamic programming are over-

whelming. In such situations, only suboptimal solutions are available. Solutions for small

or simplified problem settings, or alternatively existing decision policies for the same or

a similar problem, can be used to gain insights into the characteristics of policies that

could work well for the original problem. Unfortunately, there is no guarantee that policies

obtained through these approaches will be scalable or effective for the original setting.

Sophisticated methods for dealing with the curse of dimensionality, called Approximate

Dynamic Programming (ADP), have been developed in the last couple of decades (Bert-

sekas and Tsitsiklis 1996, Sutton and Barto 1998, Powell 2011). The literature in this field

focuses primarily on simulation-based and linear programming algorithms. Simulation-

based algorithms may be classified into two types: policy evaluation and Q-learning meth-

ods. Policy evaluation methods concern the approximation of the value function of a single

policy and can be embedded within a policy iteration scheme, while Q-learning methods

concern the approximation of the optimal value function. Policy evaluation algorithms

can be further classified as direct or indirect. Direct methods use simulation to generate

value function estimates for different system states and fit a pre-defined approximation

architecture to these estimates using a normed error criterion. They allow for non-linear

value function approximation architectures and flexibility in the collection of value func-

tion samples. Indirect methods such as TD(λ), on the other hand, determine the optimal

value function approximation within a specific class of functions, usually a linear combina-

tion of basis functions, by solving an approximate form of the optimality equations. Direct

and indirect methods differ in speed of convergence and in their suitability for different

problems. However, they share a common bottleneck, the slow speed of simulation. Lin-

ear programming algorithms are based on formulating the optimality equations associated

with a dynamic programming model as a linear program and on choosing an appropriate

approximation architecture to represent the variables (value function) in it. This approach

was initially proposed by Schweitzer and Seidmann (1985) and has been reconsidered by

de Farias and Van Roy (2003, 2004), Adelman and Mersereau (2008) and Desai et al.

Page 2 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

(2009). Although linear programming algorithms are mostly limited to affine approxima-

tion architectures, their main advantage is that they avoid the need for iterative learning

and often provide good results.

In practice, approximating a value function involves two main challenges. First, we need

the functional form to be rich enough so that it can provide a good approximation of the

value function that we are trying to approximate. This usually requires a good practical

or theoretical understanding of the structure of the specific problem at hand. Second, we

need to be sure that the approximation architecture does not unnecessarily complicate

the solution of the greedy optimization problem on the right-hand side of the optimality

equations, or the tuning algorithm for the approximation parameters. This is why most

approximation architectures found in the literature are either affine in the state variables

or defined as an affine combination of a low-dimensional set of basis functions.

Typically value functions for problems with complex dynamics can be better represented

by non-linear functional forms. However, the problem of finding an optimal action at a given

state for non-linear approximation architectures involves solving a non-linear mathematical

program. In some cases this can be done easily, in others, an additional approximation is

needed, introducing a new source of error. Also, the tuning algorithm for the approximation

parameters usually entails solving a non-linear least squares problem. Unlike in the linear

case, this problem need not have a closed or simple recursive form. Furthermore, there

is no guarantee that a non-linear solver will converge to a good solution starting from

arbitrary initial values. Finally, though non-linear approximation architectures may provide

a better fit to the true value function associated with a specific problem, the approximation

parameters will not always have intuitive interpretations.

In this paper, we describe a simulation-based method for approximately solving dis-

counted infinite-horizon Markov Decision Process (MDP) models that uses a post-decision

state formulation and in which discounted cost-to-go values are expected to be non-

decreasing in the post-decision state variables. The approach, a direct policy evaluation

method, corresponds to a least squares approximate policy iteration algorithm in which the

discounted cost-to-go function is approximated using a generalized logistic function in the

post-decision states variables. It was developed as part of our efforts to identify appropriate

value function approximation architectures for advance patient scheduling problems, and

Page 3 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

as a way of determining the main advantages and disadvantages of using simulation versus

linear programming to approximately solve dynamic capacity allocation problems.

To the best of our knowledge, this is the first time that an explicit non-linear approx-

imation architecture in the approximation parameters and the state variables is used to

identify dynamic capacity allocation policies. This is also the first paper to compare and

discuss the use of simulation-based and linear programming techniques for the same prob-

lem – an advance patient scheduling problem. Patient scheduling policies obtained through

the proposed method perform better, in most cases, than other policies for this problem.

In particular, they provide lower discounted cost values and shorter average wait times for

lower priority patients than policies directly obtained using linear programming and an

affine cost-to-go approximation in the pre-decision state variables (Patrick et al. 2008).

The paper is organized as follows. In Section 2, we summarize the literature relevant

to our work. In Section 3, we provide a detailed description of the proposed simulation-

based algorithm. In Section 4, we present an illustrative controlled queueing example.

In Section 5, we study a more practical application based on a multi-priority patient

scheduling problem. Finally, in Section 6, we review our main conclusions and suggest

possible extensions.

2. Literature

High-dimensional stochastic optimization problems arise in a wide range of operational

settings. Usually these problems can be compactly formulated as dynamic programs, how-

ever, most practical instances encounter the curse of dimensionality. Fortunately, ADP

techniques have proved to be effective in producing useful solution strategies for real-world

problems. These techniques have been succesfully applied to several dynamic resource allo-

cation problems, including patient scheduling problems. We refer the reader to Table 1 for

a list of ADP applications classified by type of problem and approach.

The main ideas and potential benefits behind the proposed simulation-based algorithm

are illustrated later in this paper by using an advance multi-priority patient scheduling

problem. This problem involves allocating a fixed amount of daily service capacity, mea-

sured in discrete units called “appointment slots”, among patients with different urgency

levels. It assumes that arriving patients, who require only one appointment slot, can either

be scheduled or diverted. Patrick et al. (2008) and Erdelyi and Topaloglu (2009) studied

Page 4 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

Table 1 A list of ADP applications classified by type of problem and approach.

Type of Problem
Approach

Simulation-based Linear Programming

Fleet Management Powell (1987), Frantzeskakis and Pow-
ell (1990), Godfrey and Powell (2002),
Simão et al. (2009), Simão et al. (2010),
Maxwell et al. (2010a,b), Schmid (2012)

Inventory Management Van Roy et al. (1997), Lam et al. (2007),
Simao and Powell (2009), Enders et al.
(2010)

Adelman and Klabjan (2012)

Revenue Management Gosavi et al. (2002), Hing et al. (2007) Zhang and Adelman (2009)

Routing Marbach et al. (2000) Adelman (2004)

Healthcare Scheduling Schütz and Kolisch (2012), Astaraky and
Patrick (2013)

Patrick et al. (2008), Sauré et al. (2012),
Gocgun and Puterman (2013)

this problem in the context of a diagnostic imaging facility and a generic job schedul-

ing problem, respectively. Erdelyi and Topaloglu considered a finite planning horizon and

focused on a class of policies characterized by a set of protection levels, whereas Patrick

et al. considered an infinite planning horizon and sought optimal scheduling policies using

an ADP approach. Patrick et al. modelled the problem as a discounted infinite-horizon

MDP and, using linear programming and an affine value function approximation in the

pre-decision state variables, were able to identify, under some conditions, an analytical

solution for the optimal approximation parameters. Using this solution, they derived an

approximate optimal scheduling policy which they evaluated using simulation.

The main drawback of the scheduling policy proposed by Patrick et al. is the sometimes

unnecessarily long wait times for lower priority patients, especially if the wait time targets

(acceptable waits) are set too far in the future. Unless there is available capacity on day

one, lower priority patients are usually booked on their target dates, regardless of the

level of system congestion. This is a direct consequence of using an affine value function

approximation.

Patrick et al.’s approach fails to take into account that optimal booking actions should

depend on the overall workload of the system (and not only on the available capacity on

each day independently) and that the marginal discounted cost associated with booking

a patient on a given day should increase as the number of available slots on that day

decreases. In addition, when some necessary conditions regarding the expected demand

over the infinite horizon and the expected number of appointment slots initially filled are

violated, the optimal values of the approximation parameters are zero and the optimal

Page 5 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

scheduling policy becomes a myopic policy which books patients on a first-come, first-

served basis. This, for example, happens when capacity is not a significant limitation.

Next, we present a detailed description of the proposed simulation-based algorithm. As

we will see later, patient scheduling policies obtained through this algorithm provide lower

discounted cost values and shorter average wait times for lower priority patients than

policies directly obtained or derived from the linear programming approach using an affine

value function approximation in the pre-decision state variables.

3. Methodology

Let ~s∈ S be a state of the system, ~a∈A~s be an action compatible with state ~s, c(~s,~a) be

the immediate cost associated with taking action ~a∈A~s when the system is in state ~s∈ S,

and p(~s′|~s,~a) be the probability of a transition to state ~s′ ∈ S as a result of choosing action

~a ∈ A~s in state ~s ∈ S. We consider the following form of Bellman’s optimality equations,

where v(~s) represents the λ-discounted cost associated with state s∈ S.

v(~s) = min
~a∈A~s

c(~s,~a) +λ
∑
~s′∈S

p(~s′|~s,~a)v(~s′)

 ∀~s∈ S (1)

We consider dynamic programs in which the effect of actions and information on the state

variables can be separated and thus can be formulated in terms of post-decision states. A

post-decision state, denoted by sx ∈ Sx, represents the state of a system immediately after

decisions are made, but prior to the acquisition of new information. This idea was first

introduced by Sutton and Barto (1998), who refer to it as the “after-state” variable. The

benefits of using post-decision states are mainly computational. It considerably reduces the

size of the state space and avoids the need to compute the expectation on the right-hand

side of the optimality equation, an often intractable task for high-dimensional models.

Two transition functions are required to model the evolution of the system from pre-

to post-decision states and vice versa. We denote them by F x : {(~s,~a) : ~s∈ S,~a∈A~s}→ Sx

and F : Sx→ S, respectively. The relationship between vx : Sx→R+
0 , the value of being in

a post-decision state, and v : S→R+
0 , the value function defined in (1), is given by:

v(~s) = min
~a∈A~s

{c(~s,~a) +λvx(F x(~s,~a))} ∀~s∈ S (2)

Page 6 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

The proposed method, an approximate policy iteration algorithm, exploits the fact that

the right-hand side of (2) is a deterministic optimization problem and uses a parametric

non-linear approximation to vx known as a generalized logistic function.

3.1. Approximate Policy Iteration

The general structure of a post-decision state implementation of an approximate policy

iteration algorithm (Bertsekas 2010) is the same as that of the classical policy iteration

algorithm (Puterman 1994). The algorithm starts with an arbitrary policy d0 and itera-

tively generates a sequence of new policies d1, d2, . . . until convergence is achieved. The

algorithm, however, assumes that a parametric approximation architecture ṽ~b : Sx→ R+
0

is used to represent the value of being in different post-decision states, where ~b denotes

the approximation parameters. In each iteration j, we first simulate the policy dj, which is

obtained from ṽ~bj−1, by solving (3) (policy evaluation) and then determine a new approxi-

mation function ṽ~bj : Sx→R+
0 by updating the value of ~b (policy improvement).

dj(~s)∈ arg min
~a∈A~s

{
c(~s,~a) +λṽ~bj−1(F

x(~s,~a))
}

∀~s∈ S (3)

The process is repeated until the difference between consecutive sets of approximation

parameters is sufficiently small. In practice, an initial stationary policy d0 is needed to

initiate the algorithm. We found that choosing this policy carefully was necessary to ensure

convergence. A suitable choice for d0 may be based on problem structure, on generalizing

a policy for a smaller instance of the same problem, or on what is used in practice.

3.2. A Simulation-Based Approximate Policy Iteration Algorithm

We now describe the proposed simulation-based approximate policy iteration algorithm.

We assume that a parametric approximation architecture ṽ~b : Sx→R+
0 is used to represent

the value function in terms of post-decision states, where ~b denotes the approximation

parameters.

1. Initialization. We first use an initial policy d0 to generate a set of post-decision states

and expected discounted cost estimates through the policy evaluation step explained

next. We then determine the initial value of the approximation parameters, ~b0, by

solving the least squares problem that is part of the policy improvement step explained

later.

Page 7 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

2. Policy Evaluation. First, in each iteration j, the algorithm generates a set {~s xr
0 , v̄r}Rr=1

of R post-decision states and value function estimates. The value function estimate

v̄r associated with post-decision state ~s xr
0 is computed as the average discounted

cost over K simulation runs starting from ~s xr
0 , where each run simulates the greedy

policy associated with ~bj−1 for T days. The post-decision state ~s xr
0 is determined by

sampling an initial state at random and simulating the stationary policy d0 for T0

decision epochs. The parameter T0 is called the warm-up period. The greedy policy

associated with ~bj−1 is given by dj(~s) ∈ arg min~a∈A~s
{c(~s,~a) + λṽ~bj−1(F x(~s,~a))} ∀~s ∈ S,

where ṽ~bj−1(F x(~s,~a)) represents the value of being in post-decision state F x(~s,~a), ~a∈
A~s. Transition functions F x : {(~s,~a) : ~s ∈ S,~a ∈ A~s} → Sx and F : Sx → S are used

to simulate the evolution of the system from pre- to post-decision states and from

post- to pre-decision states, respectively. We choose R to be ten times the number of

approximation parameters (a rule of thumb) and K to be the minimum number of

replications needed to stabilize the value function estimates associated with a random

sample of ten post-decision states. T is chosen so that the tail of the discounted cost

after the T -th decision epoch in an infinite trajectory is no larger than ε, which we set

arbitrarily small. T0 is determined as the minimum number of days after which the

system reaches steady-state. K and T0 are determined by simulating d0 for different

parameter values. The configuration parameters are defined in the following order.

First, the sample size R. Second, the warm-up period T0. Third, the length of a

simulation run T . Last, the number of replications K.

3. Policy Improvement. Next, given a sample {v̄r}Rr=1 of R average discounted cost obser-

vations produced by the policy evaluation step starting from R different post-decision

states {~s xr
0 }Rr=1, the algorithm solves the least squares problem (4) to obtain a new

set of parameter values ~b∗.

~b∗ ∈ arg min
~b≥0

{
R∑
r=1

[
v̄r− ṽ~b(~s

xr
0)
]2}

(4)

The algorithm then uses ~b∗ and the set of approximation parameter values from the

previous iteration, ~bj−1, to compute ~bj as ~bj = (1−αj)×~bj−1 +αj×~b∗, where αj follows

a generalized harmonic stepsize rule. That is αj = ᾱ/(ᾱ+ j − 1), ᾱ > 0. We smooth

the value of ~b rather than just using ~b∗ because of the noise in our estimates.

Page 8 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

4. Stopping Criteria. The algorithm finds a final value function approximation, and thus

a final policy, by alternating policy evaluation and policy improvement steps until the

difference between consecutive sets of approximation parameter values is less than

or equal to δ percent (in the sup-norm sense), that is ‖|~bj −~bj−1|/~bj−1‖∞ ≤ δ, or a

maximum number of iterations J is reached. The value of J is defined arbitrarily large

(J > 1,000).

Next, we explain our choice of a generalized logistic function to approximate the value

of being in different post-decision states.

3.3. A Generalized Logistic Value Function Approximation

In an effort to determine whether sophisticated value function approximations could pro-

vide cost-effective booking policies for advance patient scheduling problems, we solved a

number of very small instances of the MDP model in Patrick et al. (2008). The instances

involved two priority classes, booking horizons of at most three days and a daily capacity

of no more than four appointment slots. Then, using the optimal solutions, we constructed

first and second-order regression models with the pre-decision state components as the

independent variables and the discounted cost as the dependent variable. These models

produced R2 values of over 0.9 but showed a poor fit to the data, as indicated by the

corresponding residual plots. The results, as we initially conjectured, suggested that a bet-

ter value function approximation for this problem should be non-linear in the number of

bookings on each day of the booking horizon and dependent on the overall workload of the

system and not only on the available capacity on each day independently. We also found

that affine approximation architectures in the pre-decision state variables under-estimate

the value of pre-decision states when the system workload is low or high and over-estimate

it for intermediate workload levels.

In a second effort to capture the actual form of the true value function of the MDP

model in Patrick et al. (2008), we approximately solved a number of small instances of the

model using a linear programming approach. To this end, we first modified Patrick et al.’s

MDP formulation to consider the state of each appointment slot individually and then

used an affine value function approximation in the pre-decision state variables to approxi-

mately solve the corresponding equivalent linear program. The alternative formulation was

intended to capture potential non-linearities in the marginal discounted cost associated

Page 9 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

with booking a patient on a specific day as a function of the available capacity that day.

Unfortunately, the alternative model failed on its purpose as the optimal approximate solu-

tion remained the same as the solution obtained from the original ADP formulation. This

despite the fact that our initial analysis suggested a clear non-linear relationship between

the marginal discounted cost and the pre-decision state components.

Subsequently, we carried out a second regression analysis. Data for this analysis were

generated by simulating Patrick et al.’s approximate optimal policy for a small clinic

starting from 5,000 different post-decision states. We chose to use post-decision states

instead of pre-decision states in anticipation of implementing a simulation-based approach.

The value function estimate for each post-decision state (determined as the state of the

system after a warm-up period of 1,000 days) was computed as the average discounted cost

over 300 1,500-day replications. Using the estimates, we constructed first and second-order

regression models with the post-decision state components as the independent variables

and the average discounted cost as the dependent variable, obtaining similar results as

in the previous regression analysis. We then incorporated additional predictors into the

simple linear regression model (e.g., the minimum and maximum daily number of bookings

over the booking horizon) and tested several transformations of the post-decision state

components and the average discounted cost without much success in terms of fit. After

constructing several other models, we discovered that an improved fit to the data was

provided by high-order (4th-order and up) polynomial regression models with the average

discounted cost as the dependent variable and the total number of bookings over the

booking horizon as the only independent variable (R2 values of 0.99). The main issue with

choosing a polynomial model to represent the value function was the extrapolation out

of the range of the data. Scheduling policies derived from a polynomial approximation

could potentially generate extreme workload levels for which the approximation could be

very poor. Furthermore, there would be no guarantee of always having a non-decreasing

functional form in the total number of bookings. Fortunately, we observed a common S-

shaped pattern across polynomial models. As a result, we were able to identify a function

that produced a similar fit to the discounted cost values as high-order polynomial models

but with a set of desirable properties. This function is called the logistic function.

The general form of the logistic function is:

Page 10 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

f(x) = b0 +
b1

1 + e(b2x− b3)
with b1 > 0 (5)

Figure 1 depicts the fit provided by different approximation architectures. Average dis-

counted cost estimates are plotted against the total number of bookings over the booking

horizon. Although the R2 values are the same, visual inspection shows that a generalized

logistic function provides a better fit to the data than a 6th-order polynomial model. Fig-

ure 1 also shows that an affine model under-estimates the value of post-decision states

when the system workload is low or high and over-estimates the value of post-decision

states for intermediate workload levels. It also provides the evidence we used to choose the

generalized logistic function approximation in the first place.

Plots of the logistic function appear as a stretched S-shape and are increasing or decreas-

ing between two horizontal lines at levels b0 and b0 + b1. The value of b2 determines the

spread of the function and its direction. The function is increasing if b2 < 0, decreasing if

b2 > 0, and constant if b2 = 0. For small values of x, an increasing logistic function behaves

like an increasing exponential function. However, for large values of x the two functions

behave quite differently. There is only one change in curvature in the logistic function, at

point (b3/b2, b0 + b1/2). An increasing (decreasing) logistic function changes from convex

(concave) to concave (convex) at this point. Figure 2 illustrates these properties and high-

lights the region in which the function is approximately linear. Additionally, when b2 = 1,

the middle 50% of a normalized logistic curve (i.e. re-scaled between 0 and 1) spans a little

more than two units on the horizontal axis. We will use all these properties later to specify

starting values for the approximation parameters in our algorithm.

The proposed algorithm uses a slightly more general version of the logistic function, pre-

sented in (6), referred to as a generalized logistic function. It considers one approximation

parameter for each post-decision state variable sxl and thus depends on the utilization lev-

els of different system components. Note that a post-decision state is denoted by a vector

~s x = (sx1 , . . . , s
x
n), where n represents the number of system components.

ṽ~b(~s
x) = b0 +

b1

1 + exp

(
−

n∑
l=1

b2ls
x
l + b3

) with ~b≥ 0 (6)

Page 11 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Figure 1 Fit provided by different models to the data generated by simulating Patrick et al.’s policy. Average

discounted cost estimates are plotted against the total number of bookings over the booking horizon.

40 60 80 100 120 140

10
00

20
00

30
00

40
00

Total number of bookings

A
ve

ra
ge

 d
is

co
un

te
d

co
st

(a) Linear (R2 = 0.82).

40 60 80 100 120 140

10
00

20
00

30
00

40
00

Total number of bookings

A
ve

ra
ge

 d
is

co
un

te
d

co
st

(b) Exponential (R2 = 0.97).

40 60 80 100 120 140

10
00

20
00

30
00

40
00

Total number of bookings

A
ve

ra
ge

 d
is

co
un

te
d

co
st

(c) 6th order polynomial (R2 = 0.99).

40 60 80 100 120 140

10
00

20
00

30
00

40
00

Total number of bookings

A
ve

ra
ge

 d
is

co
un

te
d

co
st

(d) Logistic (R2 = 0.99).

We believe this functional form provides a good approximation architecture for the

expected discounted cost in dynamic resource allocation problems in general – and advance

scheduling problems in particular – for the following reasons:

• It is non-negative and non-decreasing in the utilization levels of the different system

components, and thus suitable for modeling cumulative cost values.

• Not only does it provide a similar fit to data as high-order polynomial models, it also

behaves well for values outside of the range of the data.

• It is more flexible in fitting different data patterns (convex, concave and approximately

linear) as illustrated in Figure 2.

Page 12 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

Concave Convex Approximately
Linear Concave Convex Approximately

Linear

f(x
)

Figure 2 On the left, a logistic function with parameters b0 = 450, b1 = 4,750, b2 = −0.15 and b3 = −4.50. On the

right, a logistic function with parameters b0 = 450, b1 = 4,750, b2 = 0.15 and b3 = 4.50.

• It makes the marginal discounted cost associated with the level of utilization of a given

system component non-constant and dependent on the level of utilization of other

components.

The use of a generalized logistic approximation architecture introduces some additional

challenges in the context of the approximate policy iteration algorithm above. The solution

to the least squares problem in (4), unlike in the linear case, does not have a closed or

recursive form. This is because the generalized logistic function is non-linear in some of the

approximation parameters. For this reason, we use a non-linear solver to obtain an optimal

solution to this problem. Fortunately, the properties of the logistic function allow us to

enhance the likelihood of convergence to an optimal solution by specifying good starting

values for the approximation parameters in each algorithm iteration. For example, we can

initially have b0 = minr{v̄r} and b1 = maxr{v̄r}− b0 as the values of b0 and b0 + b1 represent

the floor and the ceiling of a logistic curve. The initial values of ~b2 and b3 will depend

on the specific problem (see Section 5.1 for an example). In addition, it is known that

non-linear optimization algorithms often use large steps as the initial steps in a line search

and that non-linear functions are very likely to be called with some variables at their lower

or upper bounds. The problem with this is that the exponential function is likely to get

an exponentiation overflow error if its argument has no upper bound. Thus, to prevent the

non-linear optimization algorithm from moving far away from optimal solutions or into

Page 13 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

regions with unreasonable objective or derivative values, we model the argument of the

exponential function in (6) as an intermediate variable and restrict its value to be less than

or equal to five, as suggested in some commercial non-linear solvers (GAMS 2011). We

also set up appropriate scale factors for each approximation parameter in order to further

influence the search path taken by the algorithm. Scale factors are defined so that the

expected values of the approximation parameters are around one.

The algorithm, with the exception of the least squares problem in (4), was implemented

in Java. The least squares problem was coded in GAMS with IPOPT as the non-linear

solver. The time the exponential function takes in Java is considerable and actually varies

depending on the input value. For this reason, we opted for using a faster implementation

of the exponential function based on the following limit:

exp(x)≡ lim
k→∞

(
1 +

x

k

)k
(7)

We programmed exp(x) as (1 +x/k)k with k= 256 because there was no need for more

precision. Execution times in this case were on average more than three times faster than

when using Java’s implementation of exp(x).

To illustrate the quality of the policies obtained through the proposed simulation-based

algorithm, we first study a small queueing example and then present a more practical

application based on an advance multi-priority patient scheduling problem.

4. A Queueing Example

We consider the single queueing model with controllable service rate in de Farias and Van

Roy (2003). The problem is formulated as a discounted infinite-horizon MDP with state

space S = {0,1, . . . ,N − 1}, where s∈ S represents a possible number of jobs in the queue.

The job arrival probability p is the same for all states. The action a∈A to be chosen in each

state s∈ S is the service rate, where A is a finite set. We assume amax = 1−p > p so that the

queue is stabilizable. As a result of choosing service rate a∈A in state s∈ {1, . . . ,N − 2},
the next state of the system, denoted by s′ ∈ S, is given by:

s′ =

s− 1, with probability a;

s+ 1, with probability p;

s, with probability 1− p− a.

∀s∈ {1, . . . ,N − 2}, a∈A (8)

Page 14 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

From state 0, a transition to state 1 or 0 occurs with probabilities p or 1−p, respectively.

From state N −1, a transition to state N −2 or N −1 occurs with probabilities a or 1−a,

respectively, depending on the choice of a∈A. The immediate cost incurred at state s∈ S

if action a ∈A is taken is given by c(s, a) = s+m(a), where m :A→ R+
0 is an increasing

function in a∈A.

We assume that jobs arrive with probability p= 0.2, service rates are chosen from A=

{0.2,0.4,0.6,0.8} and that the cost incurred at state s∈ S if action a∈A is taken is given

by c(s, a) = s+ 60a3. The buffer size N is set at 49,999 and the discount factor is 0.98.

Since pre- and post-decision states are the same for this example, the generalized logistic

approximation architecture simply becomes:

ṽ~b(s) = b0 +
b1

1 + e(−b2s+ b3)
with ~b≥ 0 (9)

The algorithm required 62 iterations and approximately 15 hours to converge to the

final cost-to-go approximaton shown in Figure 3a. The following algorithm configuration

was used: number of simulation runs R = 100; number of replications in each simulation

run K = 1,500; warm-up period T0 = 0; number of decision epochs in each simulation

run T = 1,000 days; stepsize parameter ᾱ = 1; stopping criterion δ = 0.001; maximum

number of iterations J = 500. The initial policy d0 was the policy obtained using a linear

programming approach and an affine value function approximation in the number of jobs

in the queue. Initial states were generated randomly according to state-relevance weights

of the form w(s) = (1− ξ)ξs ∀s∈ S, with ξ = 0.9. The computer used to run the algorithm

was a 3.00GHz Quad Core PC with 16GB of RAM.

Figure 3a shows the generalized logistic approximation to the cost-to-go function gener-

ated by our algorithm in the range of relevant states (states 0 to 50). It also displays the

optimal cost-to-go function and the approximation obtained by using a linear programming

approach and an affine approximation architecture in the state variables. Note that given

the higher state-relevance weights of small states, the affine approximation estimates their

values better than the values associated with large states, making the affine approximation

far from optimal. Figure 3b presents the optimal policy and the greedy policy associated

with each approximation. We can see from Figure 3b that, unlike the affine approximation,

the generalized logistic approximation allow us to identify the optimal action for most

Page 15 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Figure 3 Illustrative single queue example with controlled service rate.

0 10 20 30 40 50

50
0

10
00

15
00

20
00

Jobs

A
pp

ro
xi

m
at

e
C

os
t−

to
−

go

affine
logistic

− optimal

(a) Approximate cost-to-go functions.

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Jobs

S
er

vi
ce

 R
at

e

affine
logistic

− optimal

(b) Policies corresponding to approximate cost-

to-go functions through (3).

0 10 20 30 40 50

50
0

10
00

15
00

20
00

Jobs

C
os

t−
to

−
go

affine
logistic

− optimal

(c) Simulated cost-to-go functions.

of the relevant states. Figure 3c shows the cost-to-go function, computed as the average

discounted cost over 1,500 1,000-day simulation runs starting from each relevant state,

associated with each policy. We can observe that despite taking suboptimal actions for

some states, the policy induced by the generalized logistic approximation more closely

approximates the optimal cost-to-go function than that generated by the affine approxi-

mation for almost all states, and it is close in value to the optimal policy even in states for

which it does not take the optimal action. From this example, we conclude that a logistic

approximation architecture is rich enough to provide a good approximation of the value

function associated with problems with complex dynamics.

5. A Multi-Priority Patient Scheduling Problem

We now consider a health care facility that can perform C fixed-length procedures a day.

The capacity of the system is measured in discrete units called “appointment slots”. Each

Page 16 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

day, the booking agent receives appointment requests from I pre-specified patient types.

Patients are classified into types according to their priorities, each priority i having a differ-

ent medically acceptable wait time, also called target time, denoted by Ti. We assume the

number of service requests of type i the agent receives on a given day follows an indepen-

dent Poisson distribution with positive mean mi. Patient types and demand distributions

do not change over time and demand is assumed uncorrelated over patient types.

Appointment scheduling decisions are made at the end of each day over an infinite

horizon and patients can be scheduled at most N days in advance. The cost associated

with booking a type i patient on day n (from today) is represented by cin. The agent also

has the ability to divert patients at a cost of h per patient.

A pre-decision state of the system is represented by a vector ~s= (~u, ~w), where un is the

number of appointment slots already booked on day n and wi is the number of patients of

type i waiting to be booked. An action available to the agent is represented by a vector

~a = (~x,~y), where xin is the number of patients of type i to book on day n and yi is the

number of patients of type i to divert. The value of c(~s,~a) is given by:

c(~s,~a) =
I∑
i=1

N∑
n=1

cinxin +
I∑
i=1

hyi ∀~s∈ S,~a∈A~s (10)

To make results comparable, we adopt Patrick et al. (2008)’s definition of cin in (11).

The parameter gi in (11) can be thought of as a daily late booking penalty associated with

patients of type i. The values of cin, although arbitrary, allow us to model the different

wait time targets. The parameter λ is the discount factor.

cin =

0, n≤ Ti;
n∑

k=Ti

λk−Ti−1gi, n > Ti.
∀i, n (11)

For simplicity, we assume that all patients waiting to be booked on a given day must be

either scheduled or diverted. In this formulation, there is no upper limit on the number of

diversions. Thus, the set of feasible actions in state (~u, ~w)∈ S, denoted by A(~u,~w), is defined

by the following two constraints:

Page 17 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

N∑
n=1

xin + yi =wi ∀i (12)

un +
I∑
i=1

xin ≤C ∀n (13)

Constraint (12) requires the number of bookings and diversions for patients of type i

to be equal to the number of patients of that type waiting to be booked. Constraint (13)

limits the total number of appointment slots booked for day n to be less than or equal to

the available service capacity that day.

Once actions are taken, the only source of uncertainty in the transition to the next pre-

decision state of the system is the new demand for service. As a result of choosing booking

action ~a= (~x,~y) in state ~s= (~u, ~w), ~a ∈A~s and ~s ∈ S, and having qi new service requests

from patients of type i, the next pre-decision state of the system, denoted by ~s′ = (~u′, ~w′),

is determined by the following probability distribution:

p(~u′, ~w′|~u, ~w,~x,~y) =

I∏
i=1

Pr(qi), if ~u′ =

(
u2 +

I∑
i=1

xi2, . . . , uN +
I∑
i=1

xiN ,0

)
and ~w′ = (q1, . . . , qI) ;

0, otherwise.

(14)

In Equation (14), the new number of appointment slots booked on day n is equal to the

number of slots previously booked on day (n+1) plus all new bookings that day. Also, the

new number of patients of each type waiting to be booked is equal to the number of new

requests of each type. The term Pr(qi) represents the probability of having qi new service

requests from patients of type i. Note that, as a consequence of considering an N -day

booking horizon, the number of appointment slots booked on day N for any valid state of

the system is equal to zero.

A post-decision state is represented by a vector ~s x = ~u x ∈ Sx, where uxn is the number

of appointment slots booked on day n after taking action ~a∗ = (~x∗, ~y∗)∈A~s in pre-decision

state ~s= (~u, ~w) ∈ S. To model the transitions from pre- to post-decision states, and vice

versa, we define transition functions F x and F as follows:

Page 18 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

F x(~s,~a) = ~u x =

(
u1 +

I∑
i=1

x∗i1, . . . , uN−1 +
I∑
i=1

x∗iN−1,
I∑
i=1

x∗iN

)
∀~s∈ S,~a∈A~s (15)

F (~s x) = (~u, ~w) = (ux2 , . . . , u
x
N ,0, q1, . . . , qI) ∀~s x ∈ Sx (16)

Equation (15) defines the next post-decision state as the current appointment schedule

plus all new bookings. Equation (16) characterize the next pre-decision state as the schedule

at the subsequent decision epoch plus the new demand for service.

The challenge with this MDP model is that even for very small problem settings, the

size of the pre-decision state space and the size of the corresponding action sets make the

computation of the true value function intractable. The state variable ~s= (~u, ~w) and the

action variable ~a= (~x,~y) have (N + I) and (I×N + I) dimensions, respectively. Assuming

that wi can take up to Qi possible values, this means that we might have up to (C +

1)N ×
∏I

i=1Qi different states and
∏I

i=1Q
(N+1)
i different, although not necessarily feasible,

actions. A small instance with a capacity of six appointment slots per day, three patients

classes with ~Q= (9,6,3) and a twelve-day booking horizon involves more than 1012 possible

pre-decision states and 1028 potential actions.

5.1. Implementation of the Proposed Algorithm

The post-decision states from which sample trajectories are generated in an approximate

policy evaluation step are obtained by sampling the number of appointment slots occupied

on each day of the booking horizon from an integer uniform distribution on the interval

[0,C] and simulating the system dynamics under Patrick et al. (2008)’s policy for T0 days.

The warm-up period T0 is the minimum number of days after which the number of bookings

on each day of the booking horizon stabilizes. It is determined by simulating the system

under Patrick et al.’s policy for different warm-up periods.The same simulation process is

used to determine ~b0, the initial values of the approximation parameters.

Using a generalized logistic function to approximate the discounted cost makes the prob-

lem of finding an exact solution to min~a∈A~s
{c(~s,~a) +λṽ~bj−1(F x(~s,~a))} a non-linear integer

program. Although several commercial solvers can be used to find an exact solution to this

problem (e.g., IPOPT or MINOS), calling a solver every time that an action needs to be

determined requires a considerable amount of time and thus becomes impractical. For this

reason, a good approximate solution is preferable. Given a pre-decision state ~s= (~u, ~w)∈ S,

Page 19 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

we first identify the set of patient types for which there are new appointment requests,

denoted by I(~w), and the set of days in which there is still available capacity, denoted by

N(~u). We then compute the approximate marginal discounted cost associated with each

possible individual booking decision with indexes in I(~w)×N(~u) and find the type-day

combination (i∗, n∗)∈ I(~w)×N(~u) with the minimum value. If the minimum approximate

marginal discounted cost is negative, this heuristic approach books a patient of type i∗

on day n∗. If not, it diverts all the remaining demand. After an individual booking deci-

sion has been determined, I(~w) and N(~u) are updated. This process is repeated until no

patients are waiting. Booking actions obtained through this sequential approach do not

show major differences with respect to the optimal solution provided by non-linear solvers.

To validate this method, we compared the actions suggested by this procedure with the

optimal actions obtained from a non-linear integer programming solver for thousands of

different pre-decision states. We found that the booking decisions differed in less than 2%

of the cases.

To enhance the likelihood of convergence to an optimal set of parameter values, we

specify the following starting values for ~b every time we solve the least squares problem

(4). We set b0 = minr{v̄r} and b1 = maxr{v̄r} − b0, as explained earlier. We consider the

total number of bookings in the system, that is x =
∑N

n=1 s
x
n0, and the fact that when

normalized the middle 50% of a logistic curve spans a little more than two units on the

horizontal axis to set b2n = 2/ IQR(x) ∀n, where IQR(x) is the interquartile range of x.

We also use the fact that b3/b2 is the value on the horizontal axis at which a logistic curve

reaches its midway point to set b3 = b2 ×median(x). We additionally set up appropriate

scale factors for each approximation parameter in order to further influence the search

path taken by the algorithm (most non-linear optimization algorithms assume that models

are well scaled). The scale factors passed to the non-linear solver are 100, 1000, 0.1 and 1

for b0, b1, ~b2 and b3, respectively.

5.2. Alternative Scheduling Policies

We compare the performance of the appointment scheduling policies suggested by our

algorithm, which are greedy with respect to the final “S-Shaped” cost-to-go approximation

and therefore called SS policies, to that of the four other policies listed below.

• Myopic policy (M). Patients are booked as soon as possible, in increasing priority

order, according to the immediate cost function defined in (10). This policy resorts to

Page 20 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

diversions of type i only when there is no available capacity within the first n̄i days of

the booking horizon, where n̄i = maxn{n : cin < h}. This policy ignores the impact of

today’s decisions on the future performance of the system.

• “Day with the Minimum number of Bookings” policy (DMB). Patients are booked as

soon as possible, in increasing priority order, on the day associated with the minimum

number of bookings within the corresponding wait time targets. Diversions occur only

when there is no available capacity within the targets.

• “Affine Approximation” policy (AA). Greedy policy provided by the approximate pol-

icy iteration algorithm using the affine approximation architecture below.

ṽ~b(~u
x) = b0 +

N∑
n=1

bnu
x
n

~b∈RN+1 ∀~ux ∈ Sx (17)

With this affine approximation architecture, the least squares problem in (4) reduces

to a linear regression for which a closed form solution is available. The approximate

optimal action ~a∗ = (~x∗, ~y∗) in state ~s= (~u, ~w)∈ S is given by:

(~x∗, ~y∗)∈ arg min
(~x,~y)∈A(~u,~w)

{
I∑
i=1

N∑
n=1

(cin +λbn)xin +
I∑
i=1

hyi

}
(18)

Thus, given a final set of parameter values {b∗n}Nn=0, the AA policy only books patients

on those days for which (cin +λb∗n−h)< 0, diverting any remaining demand.

• “Patrick, Puterman and Queyranne” policy (PPQ). Book patients in priority order.

Book as much priority 1 demand as possible into the interval [0, T1], starting with day

one and working up to day T1. For each successive patient priority i, book incoming

demand into any available appointment slot within the interval [1, Ti], starting with day

one, then day Ti, and working backwards to day two. Divert any remaining demand.

This policy corresponds to the booking guidelines derived by Patrick et al. (2008)

using the linear programming approach and an affine value function approximation

architecture in the pre-decision states variables.

Page 21 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Some observations follow. First, it is important to note that the PPQ policy does not

necessarily correspond to the approximate optimal policy suggested by the linear program-

ming approach. In some cases, the optimal values of the affine approximation parameters

are zero and the consequent appointment scheduling policies become myopic policies. This

is the case for the three instances analyzed in this paper. Second, the affine version of

the approximate policy iteration algorithm and the linear programming method developed

by Patrick et al. (2008) solve different problems. The former fits an affine approximation

architecture to cost-to-go samples using a least squares approach while the latter uses

linear programming to solve an approximate form of the optimality equations. Also, the

affine version of the algorithm is formulated in terms of post-decision states while the linear

programming method developed by Patrick et al. is formulated in terms of pre-decision

states. The affine version of the algorithm provides a least upper bound on the discounted

cost in the class of affine approximations.

The different patient scheduling policies are compared in terms of mean discounted cost,

mean average wait times, mean average time to first available appointment slot and mean

percentage of late bookings. We will start by studying a small example and then analyze

two more practical settings, one taken from Patrick et al. (2008). The computer used to

run the algorithm was a 3.00GHz Quad Core PC with 16GB of RAM.

5.3. A Small Clinic

Consider a clinic with a capacity of 6 appointment slots per day. The clinic divides demand

into three priority classes with wait time targets of 4, 8 and 12 days, and it chooses a

12-day booking horizon. Demand from each patient type is assumed to be Poisson with

means 3, 2 and 1 requests per day, respectively. The overtime cost is 100, the late booking

penalties are 20, 10 and 5, and the discount factor is 0.99.

The algorithm required 190 iterations and approximately eight hours to converge to

the final parameter values shown in Figure 4. The algorithm was configured as follows:

number of simulation runs R= 150; number of replications in each simulation run K = 300;

warm-up period T0 = 100 days; number of days in each simulation run T = 1,225; stepsize

parameter ᾱ= 1; stopping criterion δ = 0.1; maximum number of iterations J = 1,500.

Figure 4 displays the value of b2 for each post-decision state variable. It gives us an

idea of the relative cost associated with each day in the booking horizon. Since the larger

the value of b2 the more costly it is to use capacity on a given day, this figure suggests

Page 22 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

Parameter b0 b1 b3

Value 411.61 4,261.95 4.05

2 4 6 8 10 12

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Parameter b2

Booking day

V
al

ue

Figure 4 Final values of the approximation parameters.

that the booking agent should schedule patients on days one and two before scheduling

them later in the booking horizon. Figure 5 compares the performance of the resultant SS

policy with the performance of three of the other four policies. The M policy is omitted

to make the results easier to read (it performs very poorly compared to the other policies

and therefore distorts the scales). Each policy was simulated for 1,400 days using common

patient arrivals with statistics collected for each of the 1,000 simulation runs after a warm-

up period of 100 days. The warm-up period was simulated under Patrick et al.’s policy.

Simulation results are summarized in Table 2.

Table 2 shows that the SS policy outperforms all the other policies in terms of the mean

discounted cost and that it behaves relatively well (no worse than third place) with respect

to all other performance metrics. The M policy is better than the SS policy with respect

to the mean average wait time for the lowest priority patients, the mean average daily

capacity utilization and the mean number of diversions. However, it is much worse in terms

of the mean average wait times for higher priority patients, the mean average time to the

first available appointment slot and the mean percentage of late bookings. It books, on

average, almost 30% of the patients late. The PPQ policy is slightly better than the SS

policy with respect to the mean average wait time for the highest priority patients and the

Page 23 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Figure 5 Simulation results for a clinic with capacity of 6 appointment slots per day. Each policy was simulated

for 1,400 days using common patient arrivals with statistics collected for each of 1,000 simulation runs

after a warm-up period of 100 days.

mean average time to the first available appointment slot. This is as a direct consequence of

lower daily capacity utilization levels. Additionally, it does not book any patients late. The

PPQ policy, however, provides much longer average wait times for lower priority patients

Page 24 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

Table 2 Summary of the performance of the clinical booking policies. The resulting 95% confidence interval is provided for
each statistic. The best values for each criterion are highlighted in bold.

Criterion Urgency M PPQ DMB AA SS

Discounted cost – 9,229 ± 431 1,390 ± 60 1,332 ± 64 1,573 ± 85 1,180 ± 64

Average wait times

1 4.89 ± 0.05 1.92 ± 0.01 1.94 ± 0.01 2.30 ± 0.01 2.00 ± 0.01

2 5.48 ± 0.06 6.67 ± 0.02 5.47 ± 0.02 4.63 ± 0.03 4.71 ± 0.03

3 5.73 ± 0.06 10.93 ± 0.02 9.19 ± 0.02 7.89 ± 0.05 8.13 ± 0.05

Average capacity
– 5.95 ± 0.00 5.86 ± 0.00 5.89 ± 0.00 5.92 ± 0.00 5.91 ± 0.00

utilization

Diversions

1 70.93 ± 3.14 182.02 ± 3.30 152.88 ± 3.29 114.47 ± 3.27 106.06 ± 2.85

2 0.00 ± 0.00 0.04 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 15.57 ± 0.59
3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.04

Average time to
– 4.84 ± 0.06 1.81 ± 0.01 1.48 ± 0.01 2.18 ± 0.01 1.83 ± 0.01

first available slot

Percentage late

1 54.66 ± 0.98 0.00 ± 0.00 0.00 ± 0.00 7.38 ± 0.18 0.17 ± 0.01

2 15.92 ± 0.59 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.000 0.00 ± 0.00 0.00 ± 0.00

and a much larger mean number of diversions. It diverts, on average, about 5% of the

highest priority patients. Relatively speaking, the DMB policy performs similar to the

PPQ policy. The difference in their mean discounted costs is not statistically significant.

The DMB policy, however, provides shorter average wait times for lower priority patients

and the best mean average time to the first available appointment slot. Nevertheless, it

still diverts on average almost 4% of the highest priority patients. The AA policy is slightly

better than the SS policy with respect to the mean average wait time for lower priority

patients, the mean average daily capacity utilization and the mean number of diversions.

However, it schedules on average about 7% of the highest priority patients late while the

SS policy less than 0.2%.

Three distinctive characteristics allow the SS policy to achieve the lowest mean dis-

counted cost among all the policies:

1. It reacts to low workload levels early in the booking horizon by using available capacity

to serve lower priority patients sooner.

2. It reacts to low workload levels late in the booking horizon by booking some of the

highest priority patients late.

3. It anticipates high workload levels by diverting patients of all types preemptively, even

if there still is available capacity within the corresponding wait time targets.

Page 25 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

By doing this, the SS policy eliminates the need for greater numbers of diversions, and

possibly late bookings, later. To illustrate these properties, Figure 6 provides a comparison

of the actions suggested by the SS policy and the PPQ policy (the second best in terms of

mean discounted cost) for six selected pre-decision states. Pre-decision states are labeled

Case 1 to Case 6 and the differences are highlighted in grey. Most of the time the actions

suggested by these two policies will not differ (Case 1). However, if there is a low workload

level early in the booking horizon, the SS policy will book lower priority patients on days

one and two while the PPQ policy will book them on their respective wait time targets

(Case 2). If the future workload level is low and there is no available capacity within the

first four days (the wait time target for the highest priority patients), the SS policy will

book highest priority patients late whereas the PPQ policy will divert them at a higher cost

(Case 3). Finally, if the workload level is high early in the booking horizon, the SS policy

will divert patients of all types preemptively while the PPQ policy will always use the

available capacity within the corresponding wait time targets (Cases 4 to 6). The number

of diversions, however, will depend on the workload level. In some cases the SS policy will

divert all the new demand, in others, only a fraction of it.

To justify our choice of stepsize parameter (ᾱ) and stopping criterion (δ), we performed

independent sensitivity analyses on these two configuration parameters. We first ran the

algorithm for values of ᾱ ranging from 1 to 20. We found that the final value function

approximations, as depicted in Table 3 and Figure 7, did not differ significantly in terms

of ~b2 and b3, but they did with respect to b0 and b1. Even though value function estimates

remained the same in a relative sense, early booking, late booking and preemptive diversion

thresholds slightly changed, altering the behavior of the consequent policy. In spite of this,

the performance of the system did not change significantly. We ended up choosing ᾱ= 1

mainly because of time considerations. We then ran the algorithm for values of δ ranging

from 1 to 0.01. We observed that values of δ smaller than or equal to 0.1 provided almost

the same value function approximation and therefore an almost identical patient scheduling

policy. For this reason, we adopted δ = 0.1. We also analyzed the effect of independent

changes in the diversion cost (h) and the demand rates (~m). Results are presented in

Appendix A.

Finally, we observed that the mean discounted cost associated with the SS policy was

20% lower than the mean discounted cost associated with the PPQ policy for the base

Page 26 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

Figure 6 A comparison of the SS policy (left) and the PPQ policy (right) for six pre-decision states. States and

actions are presented according to the notation at the top of the figure. For each case (side-by-side

diagrams), the shaded cells indicate how the booking actions differ from each other.

case when a discount factor of 0.999 was used. In this setting, the SS policy provided

the lowest mean discounted cost and the lowest mean number of diversions, with almost

no patients booked late, closely followed by the DMB policy. The algorithm required 154

iterations and approximately 7 days to determine the final value function approximation

for this scenario. The following configuration was used: number of simulation runs R= 150;

number of replications in each simulation run K = 600; warm-up period T0 = 100 days;

number of decision epochs in each simulation run T = 14,630 days; stepsize parameter

ᾱ= 1; stopping criterion δ= 0.1; maximum number of iterations J = 500.

Page 27 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 3 Final values of approximation parameters b0, b1 and b3,
and computation times, for different values of ᾱ and δ.

Scenario b0 b1 b3 # iterations Time [hrs.]

ᾱ= 1 411.61 4,261.95 4.05 190 8.1
ᾱ= 2 406.29 4,457.74 4.11 390 17.0
ᾱ= 3 408.28 4,520.01 4.13 390 17.0
ᾱ= 5 427.36 4,999.01 4.16 738 32.4
ᾱ= 10 426.15 5,077.50 4.13 1,500* 64.7
ᾱ= 20 430.61 4,950.87 4.09 1,500* 64.9

δ = 1.00 509.22 3,779.90 4.03 24 1.0
δ = 0.10 411.60 4,261.95 4.05 190 8.1
δ = 0.01 408.56 4,546.71 4.11 1,500* 42.7

“*” indicates the cases for which the maximum number of itera-
tions was reached.

Figure 7 Final value of approximation parameter ~b2 for different values of ᾱ and δ.

5.4. Two Larger Clinics

Consider now two larger clinics, Clinic 1 and Clinic 2, one with a capacity of 10 appointment

slots per day and the other with a capacity of 30 appintment slots per day. The clinics

divide demand into three priority classes with wait time targets of 7, 14 and 21 days, and

they choose a 21-day booking horizon. Demand from each patient type is assumed to be

Poisson with means 5, 3 and 2 requests per day for Clinic 1, and 15, 10 and 5 requests

per day for Clinic 2. The diversion cost, the late booking penalties and the discount factor

remain the same as in the small clinic setting.

The overall shape of ~b2 in Figure 8a is similar to the one obtained for the small clinic

example. However, the actual b2 values are smaller and increase and decrease faster. This

translates into more patients being booked late and fewer diversions. The values of b2 in

Figure 8b are significantly lower than the values obtained before. They also drop quickly

Page 28 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

Table 4 Final values of approximation parameters b0, b1 and b3, and
computation tiems, for two larger clinics.

Scenario b0 b1 b3 # iterations Time [hrs.]

Clinic 1 (C = 10) 21.10 7,684.77 6.51 212 42
Clinic 2 (C = 30) 55.04 13,975.09 10.17 332 144

5 10 15 20

0.
02

0.
03

0.
04

0.
05

Parameter b2

Booking day

V
al

ue

(a) Clinic 1 (C = 10). (b) Clinic 2 (C = 30).
Figure 8 Final value of approximation parameter ~b2 for two larger clinics.

below the level associated with day two, suggesting that unless there is available capacity

on day one the resulting booking policy will never book lower priority patients early in the

booking horizon. Table 4 makes evident one of the major limitations of our algorithm in

comparison to a linear programming approach, the large amount of time required to find

the final values of the approximation parameters. The algorithm, for example, required 332

iterations and approximately six days in the case of the larger clinic. Linear programming

approaches, however, are mostly limited to affine approximation architectures. They are

not suitable for non-linear architectures such as the generalized logistic function.

Table 5 shows the mean discounted cost associated with each booking policy for clinics 1

and 2. Each policy was simulated using common patient arrivals with statistics collected for

each of 1,000 simulation runs. The simulation results for Clinic 1 did not differ considerably

from those obtained for the small clinic example, so similar conclusions apply. The SS

policy outperformed all the other policies in terms of the mean discounted cost and behaved

relatively well with respect to all the other performance metrics. The difference in terms of

mean discounted cost observed between the SS policy and the PPQ policy was smaller but

statistically significant. This was corroborated by a paired- samples t-test, with the level of

Page 29 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 5 Mean discounted cost associated with the booking policies for two clinics with capacities of 10 and 30
appointment per day. The resulting 95% confidence intervals are provided. The best values are highlighted in bold.

Scenario M PPQ DMB AA SS

Clinic 1 (C = 10) 19,507 ± 813 919 ± 70 1,063 ± 79 1,772 ± 127 889 ± 75
Clinic 2 (C = 30) 56,827 ± 2,598 943 ± 102 1,083 ± 112 15,479 ± 476 1,399 ± 132

significance set at 0.05. The performance of the SS policy for Clinic 2 was clearly different.

It only achieved the third best mean discounted cost, after the DMB and the PPQ policy.

Although the DMB and the SS policy produced higher discounted cost values than the

PPQ policy, they diverted on average fewer patients. Since none of these three policies

booked patients late, the only explanation for this result was the use of diversions earlier

in the simulation runs. Consequently, both the DMB and SS policy ended up performing

better than the PPQ policy in steady-state conditions. The average cost associated with

the PPQ, the DMB and the SS policy were 12.78, 11.07 and 10.58 when each policy was

simulated for 10,000 days with cost values collected after a warm-up period of 1,500 days.

Natural extensions of the research in this paper would be a study of the impact of

the initial state conditions on the performance of each policy and the development of an

average cost version of our algorithm.

6. Conclusion

In this paper, we describe a simulation-based algorithm for solving high-dimensional

dynamic programming models that is formulated in terms of post-decision states and in

which the value function is approximated using a generalized logistic function.

The benefits from using a generalized logistic function in the post-decision state vari-

ables are clear, in most cases, for an advance patient scheduling problem. However, this

approximation architecture introduces numerous additional challenges into an approxi-

mate policy iteration algorithm. For example, the problem of finding an action at a given

decision epoch involves solving a non-linear integer program. In some cases this can be

done easily, in others, an additional approximation is needed, introducing a new source

of error. In addition, a policy improvement step entails solving a non-linear least squares

problem. Unlike in the linear case, this problem does not necessarily have a closed or simple

recursive form, and, additionally, there is no guarantee that a non-linear solver will con-

verge to a good solution starting from an arbitrary initial solution. For this reason, a good

initial solution, reasonable bounds and appropriate scaling factors are needed to enhance

Page 30 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

the likelihood of convergence. Furthermore, the convergence rate of an approximate policy

iteration algorithm depends on the quality of the initial policy. Thus, having either a very

good understanding of the system dynamics or knowing a good existing policy is key.

Based on our experience solving an advance patient scheduling problem, the main limi-

tation of the proposed algorithm is the large amount of time required to perform a policy

evaluation step. This is a direct consequence of the slow speed of simulation and the com-

plexity of the optimization problem solved at each decision epoch. In order to be able to

solve large instances of high-dimensional problems, a more efficient code should be written.

If this is not possible, alternative simulation-based algorithms such as temporal-difference

learning or direct search methods (Maxwell et al. 2010b) could be adapted to the particular

setting. Parallel computing could also be used to speed up evaluation steps. Unfortunately,

there is no guarantee of success. In this context, although the linear programming approach

is mostly limited to affine approximation architectures, its main advantage is that it avoids

the need for iterative learning and still provides good results.

The results for a more practical application demonstrate that the value function for a

multi-priority patient scheduling model can be better represented by a generalized logistic

function. They also show that patient scheduling policies obtained through the proposed

algorithm perform better, in most cases, than other policies for this problem. In particular,

they provide lower discounted cost values and shorter average wait times for lower priority

patients than policies directly obtained from the linear programming approach using an

affine value function approximation.

Acknowledgments

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada

[Grant RGPIN-5527] and by the Canadian Institutes of Health Research [Grant AQC-83512]. The authors

would also like to thank Maurice Queyranne and Steven Shechter for providing considerable assistance

throughout the course of this research.

Appendix A: Additional Sensitivity Analysis

We also analyzed the effect of independent changes in the diversion cost (h) and the demand rates (~m). We

first ran the algorithm for values of h between 80 and 120. We observed that b0 and b1 increased a bit less

than proportional to the changes in h while ~b2 remained practically the same (see Table 6 and Figure 9). The

resulting policies kept similar utilization and service levels by booking more highest priority patients late

and by diverting almost the same number of patients but in a different mix. The larger the value of h, the

fewer highest priority patients and the more lower priority patients were diverted. We then ran the algorithm

Page 31 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 6 Final values of approximation parameters b0, b1 and b3, and
computation times, for different values of h and ~m.

Scenario b0 b1 b3 # iterations Time [hrs.]

h = 80 326.50 3,328.13 4.06 284 12.1
h = 90 369.37 3,746.55 4.05 190 8.1
h = 100 411.60 4,261.95 4.05 190 8.1
h = 110 458.00 4,835.75 4.06 220 9.3
h = 120 505.57 5,321.90 4.06 220 9.3

~m= 0.9× ~m 15.41 1,143.43 5.17 544 22.9
~m= 1.0× ~m 411.60 4,261.95 4.05 190 8.1
~m= 1.1× ~m 6,445.19 270,534.12 2.04 655 30.2

Figure 9 Final value of approximation parameter ~b2 for different values of h and ~m.

for demand rates 10% lower and 10% higher than in the base case. The final value function approximation,

as depicted in Table 6 and Figure 9, changed drastically. In the first case, the resulting policy recognized

the system was over-capacitated. It booked patients earlier in the booking horizon and handled demand

peaks using late bookings rather than diversions. In the second case, the resulting policy reacted to the lack

of capacity by booking patients on day one, and sometimes on day two, and by diverting any remaining

demand.

References

Adelman, D. 2004. A price-directed approach to stochastic inventory/routing. Oper. Res. 52 499–514.

Adelman, D., D. Klabjan. 2012. Computing near-optimal policies in generalized joint replenishment.

INFORMS J. Comput. 24 148–164.

Adelman, D., A. Mersereau. 2008. Relaxations of weakly coupled stochastic dynamic programs. Oper. Res.

56 712–727.

Astaraky, D., J. Patrick. 2013. A simulation based approximate dp approach to multi-class, multi-resource

surgical scheduling. Unpublished.

Page 32 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 33

Bertsekas, D. 2010. Dynamic Programming and Optimal Control , vol. II, chap. 6. 3rd ed. Unpublished,

320–527.

Bertsekas, D., J. Tsitsiklis. 1996. Neuro-Dynamic Programming . Athena Scientific, Belmont, Mass.

Das, T., A. Gosavi, S. Mahadevan, N. Marchalleck. 1999. Solving semi-Markov decision problems using

average reward reinforcement learning. Management Sci. 45 560–574.

de Farias, D., B. Van Roy. 2003. The linear programming approach to approximate dynamic programming.

Oper. Res. 51 850–865.

de Farias, D., B. Van Roy. 2004. On constraint sampling in the linear programming approach to approximate

dynamic programming. Math. Oper. Res. 29 462–478.

Desai, V., V. Farias, C. Moallemi. 2009. A smoothed approximate linear program. Adv. Neur. In. 22 459–467.

Enders, J., W. Powell, D. Egan. 2010. Robust policies for the transformer acquisition and allocation problem.

Energy Syst. 1 245–272.

Erdelyi, A., H. Topaloglu. 2009. Computing protection level policies for dynamic capacity allocation problems

by using stochastic approximation methods. IIE Trans. 41 498–510.

Frantzeskakis, L., W. Powell. 1990. A successive linear approximation procedure for stochastic, dynamic

vehicle allocation problems. Transport. Sci. 24 40–57.

GAMS. 2011. GAMS - the solver manuals. Tech. rep., GAMS Development Corporation.

Gocgun, Y., M. Puterman. 2013. Dynamic scheduling with due dates and time windows: An application to

chemotherapy patient appointment booking. Health Care Manage. Sci. .

Godfrey, G., W. Powell. 2002. An adaptive dynamic programming algorithm for dynamic fleet management,

i: Single period travel times. Transport. Sci. 36 21–39.

Gosavi, A., N. Bandla, T. Das. 2002. A reinforcement learning approach to a single leg airline revenue

management problem with multiple fare classes and overbooking. IIE Trans. 34 729–742.

Hing, M., A. Van Harten, P. Schuur. 2007. Reinforcement learning versus heuristics for order acceptance on

a single resource. J. Heuristics 13 167–187.

Lam, S., L. Lee, L. Tang. 2007. An approximate dynamic programming approach for the empty container

allocation problem. Transport. Res. C-Emer. 15 265–277.

Marbach, P., O. Mihatsch, J. Tsitsiklis. 2000. Call admission control and routing in integrated services

networks using neuro-dynamic programming. IEEE J. Sel. Area. Comm. 18 197–208.

Maxwell, M., S. Henderson, H. Topaloglu. 2010a. Tuning approximate dynamic programming policies for

ambulance redeployment via direct search. Unpublished.

Maxwell, M., M. Restrepo, S. Henderson, H. Topaloglu. 2010b. Approximate dynamic programming for

ambulance redeployment. INFORMS J. Comput. 22 266–281.

Page 33 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sauré et al.: Approximate Policy Iteration with Generalized Logistic Functions
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Patrick, J., M. Puterman, M. Queyranne. 2008. Dynamic multipriority patient scheduling for a diagnostic

resource. Oper. Res. 56 1507–1525.

Powell, W. 1987. An operational planning model for the dynamic vehicle allocation problem with uncertain

demands. Transport. Res. B-Meth. 21 217–232.

Powell, W. 2011. Approximate Dynamic Programming: Solving the Curses of Dimensionality . Wiley-

Interscience, Hoboken, N.J.

Puterman, M. 1994. Markov decision processes: discrete stochastic dynamic programming . Wiley-

Interscience, New York.

Sauré, A., J. Patrick, S. Tyldesley, M. Puterman. 2012. Dynamic multi-appointment patient scheduling for

radiation therapy. Eur. J. Oper. Res. 223 573–584.

Schmid, V. 2012. Solving the dynamic ambulance relocation and dispatching problem using approximate

dynamic programming. Eur. J. Oper. Res. 219 611–621.

Schütz, H., R. Kolisch. 2012. Approximate dynamic programming for capacity allocation in the service

industry. Eur. J. Oper. Res. 218 239–250.

Schweitzer, P., A. Seidmann. 1985. Generalized polynomial approximations in Markovian decision processes.

J. Math. Anal. Appl. 110 568–582.

Simão, H., J. Day, A. George, T. Gifford, J. Nienow, W. Powell. 2009. An approximate dynamic programming

algorithm for large-scale fleet management: A case application. Transport. Sci. 43 178–197.

Simão, H., A. George, W. Powell, T. Gifford, J. Nienow, J. Day. 2010. Approximate dynamic programming

captures fleet operations for schneider national. Interfaces 40 342–352.

Simao, H., W. Powell. 2009. Approximate dynamic programming for management of high-value spare parts.

J. Manuf. Technol. Manage. 20 147–160.

Sutton, R., A. Barto. 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge, Mass.

Van Roy, B., D. Bertsekas, Y. Lee, J. Tsitsiklis. 1997. A neuro-dynamic programming approach to retailer

inventory management. Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,

vol. 4. IEEE, 4052–4057.

Zhang, D., D. Adelman. 2009. An approximate dynamic programming approach to network revenue man-

agement with customer choice. Transport. Sci. 43 381–394.

Zhang, W., T. Dietterich. 1995. High-performance job-shop scheduling with a time-delay TD(λ) network.

Adv. Neur. In.. 1024–1030.

Page 34 of 34

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

