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the British Columbia Cancer Agency (BCCA). As a result, we formulated
and solved a discounted infinite-horizon Markov decision process for schedul-
ing cancer treatments in radiation therapy units. The main purpose of this
model is to identify good policies for allocating available treatment capacity
to incoming demand, while reducing wait times in a cost-effective manner.
We use an affine architecture to approximate the value function in our for-
mulation and solve an equivalent linear programming model through column
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mance for a practical example based on data provided by the BCCA.
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1. Introduction

External beam radiation (hereafter referred to as radiation therapy) is
a cancer treatment that uses high-energy rays to kill or shrink tumor cells.
It is the principal therapy for most types of cancer, but it is also used in
combination with other treatments and therapies (e.g. chemotherapy, hor-
monal therapy and surgery). When a cure is not possible, radiation therapy
can be used for palliative purposes. In British Columbia, approximately 52%
of cancer patients require radiation therapy some time during the course of
their illness and 40% receive radiation therapy within five years of diagnosis
(Source: BCCA registry and treatment databases).

Long standing evidence suggests that delays in radiation therapy are as-
sociated with tumor progression, persistence of cancer symptoms, psycholog-
ical distress and decreased cancer control and survival rates (O’Rourke and
Edwards, 2000; Fortin et al., 2002; Waaijer et al., 2003; Coles et al., 2003;
Mackillop, 2007; Chen et al., 2008). For this reason, many cancer institutions
around the world have adopted wait time benchmarks for the time from when
the patient is ready to begin treatment to the start of it. In Canada, the max-
imum acceptable wait suggested by the Canadian Association of Radiation
Oncologists for all non-emergency and non-urgent cases is 14 days (Norris,
2009). Unfortunately, fewer than 75% of the radiation therapy treatments in
British Columbia are initiated within this time frame (see Table 1).

Table 1: Service levels for patients who received radiation therapy in British Columbia
between 2004 and 2008. Source: BCCA registry and treatment databases.

year patients
% initiated within

14 days 28 days 56 days
2004 9,834 76.4% 97.5% 100.0%
2005 10,144 71.3% 96.2% 99.9%
2006 10,168 73.8% 97.5% 100.0%
2007 10,487 77.0% 96.3% 99.9%
2008 10,318 70.0% 96.2% 99.9%

Delays in radiation therapy are a direct consequence not only of an im-
balance between capacity and demand but also a result of inefficient patient
scheduling. Three relevant aspects make scheduling radiation therapy treat-
ments especially challenging. First, radiation therapy treatments can be
classified into multiple types. The classification is usually made on the basis
of cancer site, treatment intent and urgency level. Second, radiation therapy
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treatments are spread out over time. For most types of cancer, radiation
therapy is delivered in daily consecutive sessions for a time period that may
vary between 1 day and 8 weeks, with breaks on weekends. Third, radiation
therapy sessions do not necessarily have the same duration. Each session
is scheduled for a time period ranging from 12 to 60 minutes. The com-
bination of these three aspects of radiation therapy treatment means that
a simple first-come-first-served policy will inevitably perform very poorly.
This is either because later arriving higher priority demand would be forced
to wait longer or else because the uneven session lengths would create unus-
able gaps in the system resulting in wasted capacity (not unlike in the game
Tetris). Thus, due to the importance of timely access to care (as mentioned
above) as well as the difficulty of determining intelligent schedules through
simpler means, more sophisticated mathematical models are necessary than
have hitherto been used for this problem.

To that end, we formulate the radiation therapy appointment scheduling
problem as a discounted infinite-horizon Markov decision process (MDP). To
deal with an intractable number of variables and constraints, we first approx-
imate the value function in the equivalent linear programming formulation of
the MDP using an affine architecture and then solve the dual of the resulting
approximate linear programming model through column generation. From
the solution we derive an approximate optimal booking policy which we test
via simulation. We assume that the machines used for radiation therapy –
the treatment units – do not differ significantly and thus that treatments
can be delivered by any unit. The total treatment capacity is determined by
aggregating individual capacities from multiple machines. This assumption
is realistic considering the characteristics of the facilities analyzed for this
study, where either the treatment units are identical or they will become
operationally identical through scheduled replacements.

From a methodological point of view, our work represents a significant
extension of the dynamic multi-priority patient scheduling model and solu-
tion approach developed by Patrick et al. (2008). In addition to multiple
priority types, we consider patients who receive treatment across multiple
days and for irregular lengths of time (see Figure 1). Furthermore, we allow
the possibility of using overtime on different days of the planning horizon,
and not necessarily for entire treatments. These additional complications
are essential for any realistic attempt to model the scheduling of radiation
therapy treatments. The new dimensions to the problem and the possibil-
ity of enlarging the system capacity through the use of overtime, together

3



Figure 1: Graphical representation of some possible treatments patterns. Pattern (b), for
example, represents a treatment consisting of a first session of three appointment slots and
four additional sessions of two appointment slots each.

with the non-convex nature of the overtime cost, make this problem much
more difficult to model and solve. To the best of our knowledge, ours is the
first paper to incorporate multi-priority and multi-appointment requirements
when optimizing advance scheduling policies in a dynamic setting. Our work
also constitutes a novel application of approximate dynamic programming to
a problem that has received very limited attention in the operations research
literature.

The paper is organized as follows. Section 2 summarizes the literature
relevant to our work. Section 3 provides a detailed description of the radiation
therapy appointment scheduling problem. Sections 4 and 5 describe the
proposed MDP model and solution approach, respectively. In Section 6 we
provide some managerial insights based on applying our methodology in a
small sample problem. We also evaluate the benefits of the proposed method
by simulating its performance in a more practical example based on BCCA
patient data. Finally, Section 7 states our main conclusions and suggests
possible extensions.

2. Literature review

The literature on patient scheduling is usually classified as either allo-
cation scheduling or advance scheduling. Allocation scheduling refers to
methodologies for assigning specific resources and starting times to patients,
but only once all patients for a given service day have been identified. Ad-
vance scheduling, on the other hand, refers to methodologies for scheduling
patient appointments in advance of the service date, when future demand is
still unknown. Most studies in the patient scheduling literature address allo-
cation scheduling problems. Magerlein and Martin (1978), Cayirli and Veral
(2003), Mondschein and Weintraub (2003), Gupta and Denton (2008), Car-
doen et al. (2010) and Begen and Queyranne (2011) provide comprehensive
reviews. Our work, however, falls into the second class of problems.
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Even though patient scheduling problems have been studied extensively
over the last decade, the allocation of medical capacity in advance of the
service date and in the presence of multiple types of patients has received
limited attention. Rising et al. (1973) describe a case study where simulation
models are used to evaluate alternative decision rules for scheduling appoint-
ments in an outpatient clinic. The authors consider two types of patients,
walk-ins and patients with advance appointments, and focus on the effects
of different booking rules on patient throughput and physician utilization.
Gerchak et al. (1996) study the advance scheduling of elective surgeries at
an operating room when a random portion of the daily capacity is devoted to
emergency surgeries. They analyze the tradeoffs between capacity utilization
and delays and prove that the optimal capacity allocation policy is not neces-
sarily a control limit policy. Lamiri et al. (2008) extend the model developed
by Gerchak et al. by specifying the set of elective surgeries to be performed
in each day of a planning horizon and propose a solution method combining
Monte Carlo simulation with mixed-integer programming. Vermeulen et al.
(2009) develop a dynamic although case-specific method for scheduling CT-
scan appointments at a radiology department. They show through the use of
simulation that simple rules based on comparing available and needed capac-
ity for different patient groups allow a significant improvement in the number
of patients scheduled on time. Schütz and Kolisch (2012) adopt a revenue
management approach to address the problem of determining whether or not
to accept requests for examinations on an MRI scanner. Although they con-
sider a single booking period, requests coming from different patient types
are allowed in advance and during the examination day.

Most related to our work are the papers of Patrick et al. (2008) and Erde-
lyi and Topaloglu (2009). They study a problem that involves allocating a
fixed amount of daily capacity among entities with different priorities. Erde-
lyi and Topaloglu consider a finite planning horizon and focus on a class of
policies that are characterized by a set of protection levels, whereas Patrick et
al. consider an infinite planning horizon and seek optimal scheduling policies
using approximate dynamic programming. In both cases, the authors assume
that each entity to be served consumes only one unit of capacity. None of
the studies mentioned above considers multi-appointment requirements.

The majority of the contributions from the operations research commu-
nity to radiation therapy are associated with treatment planning (Mǐsić et al.,
2010; Kim et al., 2012; Lim and Cao, 2012). The radiation therapy appoint-
ment scheduling problem, in particular, has attracted only limited attention.
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Conforti et al. (2010) describe an integer programming model intended to
support radiation therapy scheduling decisions. Their model includes both
multiple priority classes and multiple capacity requirements but differs from
ours in that their model is static and thus provides an operational and my-
opic solution. By myopic we mean a solution that considers only what is
known at the present, ignoring the impact of today’s decisions on the future.
In contrast, we provide a dynamic policy that integrates future cost over an
infinite horizon. We choose an infinite planning horizon because we are inter-
ested not only in generating specific patient schedules but also in identifying
and understanding the properties of good booking policies.

3. Appointment scheduling

The appointment scheduling process for radiation therapy is the process
by which available treatment capacity is assigned to incoming demand. It
relies on the expertise of one or two booking agents. Each day the booking
agent receives requests for appointments for treatments classified into I dif-
ferent pre-specified types. Treatments are classified on the basis of cancer
site, treatment intent, urgency level and capacity requirements – that is the
number of daily consecutive sessions into which the requested treatment is
divided and the number of appointment slots required to deliver each ses-
sion. Appointment slots are typically 12 or 15 minutes long and quite often
the initial session is one appointment slot longer than the rest of the ses-
sions in order to provide additional time for patient and system setup. Each
treatment type is associated with a vector r⃗i = {rij}lij=1, where li repre-
sents the number of sessions of a treatment of type i. This vector describes
the duration, in appointment slots, of each of its sessions. For example,
r⃗ = (2, 1, 1, 1, 1) represents a treatment consisting of an initial session of two
appointment slots followed by four additional sessions of one appointment
slot each (see Figure 1a). Daily demand for each treatment type i follows a
discrete probability distribution with meanmi requests per day. The demand
distribution is independent for each type and does not change over time. For
modeling convenience, we assume scheduling decisions are made once a day
and the booking agent may schedule treatments at most N days in advance.
Assuming that decisions are made once a day is not too far from reality. In
practice, booking decisions usually take place in batches a couple of times a
day. In this manner, the booking agent – typically a radiation therapist – is
able to assess the future workload of the system, take into account clinical
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considerations and prioritize urgent cases.
Once the booking requests for a given day are known, the booking agent

observes the number of appointment slots scheduled from today to the end of
the planning horizon and determines how to allocate the available treatment
capacity to the waiting demand. As an alternative action, he/she may decide
to postpone some of the booking decisions to the next day. The number of
appointment slots booked on any given day cannot exceed Cr + Co units.
Parameters Cr and Co are fixed and correspond to the daily regular-hour
and overtime capacities respectively. Since the booking agent may schedule
treatments at most N days in advance, the number of days in the planning
horizon, M , must be large enough to allow the completion of any treatment
initiated on day N . That is M = N +maxi{li} − 1.

Under current practice, these booking decisions are made without explic-
itly considering that some treatments can be initiated further into the future
allowing the appointments for more urgent treatments to be scheduled earlier.
The presence of highly variable demand, limited treatment capacity, multiple
urgency levels and multiple appointment requirements make it impossible for
the scheduler to adequately assess the real impact of today’s decisions on the
future performance of the system. This lack of foresight generates several
inefficiencies that usually translate into unnecessary delays, an unsystematic
prioritization of patients, a larger number of isolated appointment slots that
cannot be used and a higher overtime utilization. The model developed in
this paper seeks to provide the scheduler with a means of adequately as-
sessing the future impact of today’s decisions in order to more intelligently
allocate capacity.

4. A Markov decision process model

In this section, we formulate the radiation therapy appointment schedul-
ing problem as a discounted infinite-horizon MDP model. We expand the
dynamic multi-priority patient scheduling model developed by Patrick et al.
(2008) by introducing multiple appointment requests, multiple session dura-
tions and allowing parts of the appointments to be delivered using overtime.

4.1. Decision epochs

Scheduling decisions are made at the end of each day.
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4.2. State space

At the end of each day, the booking agent has access to the current sched-
ule from today to the end of the planning horizon as well as the number of
treatments of each type waiting to be booked. The current schedule pro-
vides the booking agent with the number of regular-hour and overtime slots
available on each day of the planning horizon. Thus, a state of the system,
denoted by s⃗ ∈ S, takes the following form:

s⃗ = (u⃗, v⃗, w⃗) = (u1, . . . , uM , v1, . . . , vM , w1, . . . , wI)

Here um represents the number of regular-hour appointment slots already
booked on day m, vm the number of overtime slots already booked on day
m and wi the number of treatments of type i waiting to be booked. The
definition of w⃗ considers not only the new demand for treatment but also
all treatments not scheduled previously. As a consequence of using a rolling
planning horizon, at the beginning of each decision epoch uM = vM = 0.

In order to use the mathematical programming models described later,
we require a finite state space. For this reason, we implicitly assume upper
bounds to the number of treatments of each type waiting to be booked. The
bounds are set sufficiently high so they are of little practical significance.

4.3. Action sets

At the end of each day, the booking agent must decide on which day to
start each of the treatments waiting to be scheduled. In some cases, this
implies delivering parts of some treatments using overtime. Alternatively,
the agent may postpone to the next day the scheduling decisions for some
treatments. Overtime and postponements are intended to relieve the stress
on the system. Any action available to the booking agent can be represented
by:

a⃗ = (x⃗, y⃗) = (x11, x12, . . . , xIN , y1, . . . , yM)

Here xin represents the number of treatments of type i booked today to
start on day n and ym the number of overtime slots booked today on day m.

Three important observations follow. First, we have chosen to model the
capacity utilization component of the state space using two state variables
instead of one because ym is a non-convex function of the total number of
appointment slots already booked on day m and the capacity allocation de-
cisions. In this way, we do not need to define any additional variables and
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constraints to deal with the non-convexity of the overtime cost. Second, the
number of treatments of type i that remain unscheduled at the end of the
day can be written as wi −

∑N
n=1 xin. Third, it is important to note that we

are not assigning patients to specific appointment slots, we are just allocat-
ing capacity to each treatment request. Once capacity is allocated, a second
level of scheduling is needed which assigns patients to specific appointment
times and specific machines.

The set of feasible actions compatible with state (u⃗, v⃗, w⃗) ∈ S, denoted
by A(u⃗,v⃗,w⃗), must satisfy the following constraints:

N∑
n=1

xin ≤ wi ∀i (1)

um +
I∑

i=1

min{m,N}∑
k=max{m
−li+1,1}

ri(m−k+1)xik ≤ Cr + ym ∀m (2)

vm + ym ≤ Co ∀m (3)

xin ∈ Z+ ∀i, n ym ∈ Z+ ∀m

Constraint (1) limits the number of bookings for each treatment type to
be less than or equal to the number of treatments waiting to be booked.
Constraint (2) restricts the total number of appointment slots booked today
for day m to be less than or equal to the available treatment capacity that
day. This is equivalent to ensuring that the number ym of overtime slots
booked today for day m is sufficient to cover the new bookings made for that
day. Constraint (3) limits the total overtime utilization on day m to be less
than the overtime capacity. All action variables are positive and integer.

4.4. Transition probabilities

Once all scheduling actions are taken, the only source of uncertainty in
the transition to the next state of the system is the number of new requests
for each type of treatment. Thus, as a result of choosing booking action
a⃗ = (x⃗, y⃗) in state s⃗ = (u⃗, v⃗, w⃗), a⃗ ∈ As⃗ and s⃗ ∈ S, and having qi new requests
of type i, the state of the system the next day, denoted by s⃗′ = (u⃗′, v⃗′, w⃗′),
will be determined by the following probability distribution:
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p(s⃗′|s⃗, a⃗) =


I∏

i=1

Pr(qi) if s⃗′ satifies equations (4) to (7),

0 otherwise.

u′
m = um+1 +

I∑
i=1

min{(m+1),N}∑
k=max{(m+1)

−li+1,1}

ri[(m+1)−k+1]xik − ym+1 m < M, (4)

v′m = vm+1 + ym+1 m < M, (5)

w′
i = wi −

N∑
n=1

xin + qi ∀i, (6)

u′
M = v′M = 0 (7)

Equations (4), (5) and (7) define the new number of regular-hour and
overtime appointment slots booked on day m as a function of the number of
previous slots booked on day m+ 1 plus all new bookings that affected day
m+1. Equation (6) determines the new number of treatments waiting to be
booked as the number of treatment requests that have not yet been booked
plus new demand. The term Pr(qi) corresponds to the probability of having
qi new requests for treatments of type i.

4.5. Costs

The total cost associated with choosing booking action a⃗ = (x⃗, y⃗) in state
s⃗ = (u⃗, v⃗, w⃗), a⃗ ∈ As⃗ and s⃗ ∈ S, comes from three sources: the penalties
associated with the resulting patient wait times, the cost associated with the
use of overtime, and the penalties associated with postponing some of the
booking decisions. We represent the total cost as follows:

c(s⃗, a⃗) =
I∑

i=1

N∑
n=1

cinxin +
M∑

m=1

hmym +
I∑

i=1

gi

(
wi −

N∑
n=1

xin

)
(8)

where

cin =
n∑

k=1

λk−1fik ∀i, n hm = λm−1h ∀m

10



In Equation (8), cin represents the penalty (if any) for starting a treatment
of type i on day n, hm is the discounted overtime cost associated with an
overtime booking on day m and gi corresponds to the penalty for postponing
to the next day the booking of a treatment of type i. The values of cin
are obtained by discounting the penalties fik associated with each additional
day of wait before the start of a treatment. The relative orders of the wait
time penalties are determined by expert opinion and investigated through
sensitivity analysis. They are defined in relation to existing guidelines for
acceptable waits and taking into consideration estimates of the importance
of radiation therapy for different disease sites. The overtime cost is denoted
by h and the discount factor by λ < 1.

To avoid keeping track of the wait times associated with postponed re-
quests, our model assumes that the portion of the demand that is not booked
today is handled the same as the new demand tomorrow. The postponement
penalties, however, are set orders of magnitude higher than the wait time
penalties and the overtime cost. Postponements thus constitute a last resort
to relieve stress on the system and are intended to ensure problem feasibility.

4.6. Optimality equations

The value function in our formulation, denoted by v(s⃗), corresponds to
the total expected discounted cost over the infinite horizon. Of course, we are
not so much interested in determining the value function for a given policy
as in finding the optimal stationary policy. To identify such a policy we need
to solve the following optimality equations:

v(s⃗) = min
a⃗∈As⃗

c(s⃗, a⃗) + λ
∑
s⃗′∈S

p(s⃗′|s⃗, a⃗)v(s⃗′)

 ∀s⃗ ∈ S (9)

The challenge is that even for very small instances the size of the state
space and the size of the corresponding action sets make a direct solution
to (9) impossible. The state variable s⃗ = (u⃗, v⃗, w⃗) and the action variable
a⃗ = (x⃗, y⃗) have (M + I + M) and (I × N + M) dimensions, respectively.
Assuming that wi can take Di possible values, this means that we might have
up to (Cr+1)M×

∏I
i=1Di×(Co+1)M different states and

∏I
i=1D

N
i ×(Co+1)M

different (not necessarily feasible) actions. As an example, the formulation
for the practical example presented in Section 6.2 involves more than 10300

possible states and 10500 potential actions.
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5. Solution approach

In order to deal with an intractable number of states and actions, we first
transform our MDP model into its equivalent linear programming form. The
linear programming approach to discounted infinite-horizon MDPs, initially
presented by d’Epenoux (1963), is based on writing the optimality equations
in (9) as follows:

max
∑
s⃗∈S

α(s⃗)v(s⃗) (10)

subject to

c(s⃗, a⃗) + λ
∑
s⃗′∈S

p(s⃗′|s⃗, a⃗)v(s⃗′) ≥ v(s⃗) ∀s⃗ ∈ S, a⃗ ∈ As⃗

The value of α(s⃗) represents the weight of state s⃗ ∈ S in the objective
function. The solution to the equivalent linear programming model in (10) is
the same as the solution to the optimality equations in (9) when α⃗ is strictly
positive (Derman, 1970; Kallenberg, 1983). We normalize α⃗ to

∑
s⃗∈S α(s⃗) = 1

and consider it as an exogenous probability distribution over the initial state
of the system. The equivalent linear programming model, however, does
not avoid the curse of dimensionality. The model in (10) has one variable
for every state s⃗ ∈ S and one constraint for every feasible state-action pair
(s⃗, a⃗), s⃗ ∈ S and a⃗ ∈ As⃗, making its solution impossible.

Fortunately, a whole field of potential methods for dealing with the curse
of dimensionality, called Approximate Dynamic Programming (ADP), has
been developed in the last decade (Bertsekas and Tsitsiklis, 1996; Powell,
2007). A common approach within this field consists of using an approxima-
tion architecture to represent the value function in the MDP formulation or,
equivalently, the variables in the equivalent linear programming model. The
approximate linear programming approach to ADP was initially introduced
by Schweitzer and Seidmann (1985) and has recently been reconsidered by
de Farias and Roy (2003), Adelman and Mersereau (2008), Patrick et al.
(2008), Desai et al. (2009) and Adelman and Klabjan (2011).

To solve the radiation therapy appointment scheduling problem we chose
the following affine approximation to v(u⃗, v⃗, w⃗):

v(u⃗, v⃗, w⃗) = W0 +
M∑

m=1

Umum +
M∑

m=1

Vmvm +
I∑

i=1

Wiwi (11)
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U⃗ , V⃗ , W⃗ ≥ 0,W0 ∈ R

In this way the approximate mathematical programming model is still
linear and the new variables are directly interpretable. Any other more so-
phisticated approximation such as a linear combination of a set of more
general basis functions would make the subproblem in our column gener-
ation algorithm a non-linear integer programming problem. The values of
{Um}Mm=1, {Vm}Mm=1 and {Wi}Ii=1 represent the marginal cost of having an
additional regular-hour appointment slot occupied on day m, the marginal
cost of having an additional overtime slot used on day m and the marginal
cost of having one more treatment of type i waiting to be booked, respec-
tively. If we substitute (11) into (10) and restrict α⃗ to be a probability
distribution, we obtain:

max
U⃗ ,V⃗ ,W⃗ ,W0

{
W0 +

M∑
m=1

Eα[um]Um +
M∑

m=1

Eα[vm]Vm +
I∑

i=1

Eα[wi]Wi

}
(12)

subject to

(1− λ)W0 +

M∑
m=1

µm(s⃗, a⃗)Um +

M∑
m=1

νm(s⃗, a⃗)Vm +

I∑
i=1

ωi(s⃗, a⃗)Wi ≤ c(s⃗, a⃗)

∀s⃗ ∈ S, a⃗ ∈ As⃗

U⃗ , V⃗ , W⃗ ≥ 0,W0 ∈ R

where

Eα[um] =
∑
s⃗∈S

α(s⃗)um(s⃗) ∀m µm(s⃗, a⃗) = um(s⃗)− λu′
m(s⃗, a⃗) ∀m

Eα[vm] =
∑
s⃗∈S

α(s⃗)vm(s⃗) ∀m νm(s⃗, a⃗) = vm(s⃗)− λv′m(s⃗, a⃗) ∀m

Eα[wi] =
∑
s⃗∈S

α(s⃗)wi(s⃗) ∀i ωi(s⃗, a⃗) = wi(s⃗)− λ

(
wi(s⃗)−

N∑
n=1

xin +mi

)
∀i

The approximate equivalent linear programming model in (12) has a
tractable number of variables, (2M+I+1), but still an intractable number of
constraints. For this reason, we solve its dual (13) using column generation.
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min
X⃗

∑
s⃗∈S, a⃗∈As⃗

c(s⃗, a⃗)X(s⃗, a⃗) (13)

(1− λ)
∑

s⃗∈S, a⃗∈As⃗

X(s⃗, a⃗) = 1∑
s⃗∈S, a⃗∈As⃗

µm(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[um] ∀m∑
s⃗∈S, a⃗∈As⃗

νm(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[vm] ∀m∑
s⃗∈S, a⃗∈As⃗

ωi(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[wi] ∀i

X⃗ ≥ 0

Column generation finds the optimal solution to (13), the master problem,
starting with a small set of feasible state-action pairs and iteratively adding
the state-action pair associated with the most violated primal constraint.
Unfortunately, there is no easy way to identify an initial set of feasible state-
action pairs to (13). For this reason, our methodological approach involves
two additional mathematical programming models. The first model finds an
initial set of state-action pairs by combining the action-set constraints and the
definition of µm(s⃗, a⃗) in (12). It is solved for each treatment type and focuses
on dual feasibility rather than optimality. The second model corresponds to
a Phase I method. It starts from the state-action pairs provided by the first
model and incorporates new state-action pairs into the formulation until a
feasible solution to (13) is found (see Appendix A for more details).

The model used to identify the state-action pair associated with the most
violated primal constraint, the pricing problem, is itself an optimization prob-
lem. Given the dual values associated with the current solution to (13),
{Um}Mm=1, {Vm}Mm=1 and {Wi}Ii=1, the next state-action pair to enter the ba-
sis is given by (14).

argmin
s⃗∈S,⃗a∈As⃗

{
c(s⃗, a⃗)− (1− λ)W0 −

M∑
m=1

µm(s⃗, a⃗)Um −
M∑

m=1

νm(s⃗, a⃗)Vm −
I∑

i=1

ωi(s⃗, a⃗)Wi

}
(14)

I∑
i=1

min{m,N}∑
k=max{m
−li+1,1}

ri(m−k+1)xik ≥ ym ∀m (15)

uM = 0 vM = 0 (16)
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Three additional constraints are added to guarantee that only valid state-
action pairs are generated. Constraint (15) limits the number of overtime
bookings on day m to be less than or equal to the total number of new
bookings for that day. Constraints in (16) ensure that the M -th day in the
planning horizon of any valid state-action pair has no appointments in it.

The column generation algorithm iterates until no primal constraint is
violated or until we are close enough to quit (stopping criterion of -0.0001),
giving us {U∗

m}Mm=1, {V ∗
m}Mm=1 and {W ∗

i }Ii=1. These values are then used to
identify the approximate optimal policy. In practice, rather than comput-
ing and storing the approximate optimal actions for each state, a resource-
intensive task, we only compute them as needed. To this end, we solve:

d∗(s⃗) ∈ argmin
(x⃗,y⃗)∈As⃗

{
I∑

i=1

N∑
n=1

Cinxin +
M∑

m=1

Hmym

}
(17)

where

Cin = cin + λ

(n−1)+li−1∑
k=(n−1)

ri(k+1−n+1)U
∗
k − (gi + λW ∗

i ) ∀i, n

Hm =

{
h m = 1
hm + λV ∗

m−1 − λU∗
m−1 m > 1

The integer programming model in (17) is obtained by inserting the ap-
proximate value function defined by {U∗

m}Mm=1, {V ∗
m}Mm=1 and {W ∗

i }Ii=1 into
the right hand side of the optimality equations in (9) and ignoring the con-
stant terms. The coefficients accompanying the booking actions in (17) have
direct interpretations and their values provide a good description of the ap-
proximate optimal policy. Cin balances the penalty associated with a wait
time of n days and the cost due to the loss of available treatment capacity in
the future, cin + λ

∑(n−1)+li−1
k=(n−1) ri(k+1−n+1)U

∗
k , against the benefit due to the

fact that the booking decision is not postponed and the treatment request
does not re-appear in tomorrow’s demand, gi + λW ∗

i . Hm balances the cost
associated with a one-unit increase in the system total capacity on daym and
the cost due to the loss of available overtime capacity on daym−1 tomorrow,
hm + λV ∗

m−1, against the benefit from freeing regular-hour capacity on day
m−1 tomorrow, λU∗

m−1. It is important to note that when the expected daily
demand for appointment slots does not exceed the regular-hour capacity (i.e.
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when capacity is not a binding constraint), {U∗
m}Mm=1, {V ∗

m}Mm=1 and {W ∗
i }Ii=1

are equal to zero. In this case, the coefficients of the booking actions do not
need to be adjusted to take into account the impact of today’s decisions on
the future and the approximate optimal policy becomes a myopic policy (Cin

and Hm are simply defined by cin − gi and hm, respectively). We refer the
reader to Appendix B for a partial description of the analytical solution to
(12) for the sample problems presented in Section 6.

One of the difficulties with column generation is the large number of
iterations needed to find the optimal solution to the master problem (of-
ten referred to as the tailing-off effect of column generation, Lübbecke and
Desrosiers 2005). In order to reduce execution times, we experimented with
alternative ways of finding an initial set of feasible state-action pairs, differ-
ent stopping criteria and several methods for solving the master problem in
each iteration. We found the best execution times are achieved when the
master problem is solved using barrier methods starting from the immediate
previous solution. We also implemented the in-out approach proposed by
Ben-Ameur and Neto (2007) to further reduce computation time.

The implementation of the column generation algorithm and the integer
programming model used to identify the approximate optimal policy was
performed in GAMS 23.5 with CPLEX 12.2 as the solver.

6. Results

This section provides some insights regarding the properties of the ap-
proximate optimal policy and illustrates the potential benefits that can be
obtained from its use. We first consider a small example of the problem and
analyze the impact of different treatment specifications on the values of Cin

and Hm. Then, we evaluate the approximate optimal policy by simulating its
performance for a more practical example based on British Columbia Cancer
Agency (BCCA) operations.

6.1. Policy insights

In this section, we analyze six scenarios to illustrate some relevant proper-
ties of the coefficients defining the approximate optimal policy. Each scenario
assumes the values of cin are determined by discounting a constant wait time
penalty fi for each day of wait beyond a recommended wait time target (wait
time penalties are incurred for each appointment slot). The regular-hour
capacity is set equal to the average demand, request arrivals are assumed
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Poisson and postponements are not allowed. In theory, assuming that post-
ponements are not allowed can result in infeasibility. However, in practice,
this is not an issue as there are sufficient regular-hour and overtime appoint-
ment slots to guarantee feasibility. Demand distributions are truncated at
three times their mean values.

(a) Base case – we consider a hypothetical radiation therapy center with a
regular-hour capacity of 50 appointment slots per day and an overtime
capacity of 6 appointment slots per day. The facility initially delivers only
one type of treatment consisting of five consecutive one-appointment-slot
sessions. The average demand for this type of treatment is 10 requests
per day. The wait time target is 10 days and the wait time penalty is
$50 per day per appointment slot. The overtime cost is $100, the length
of the booking horizon is 25 days and the discount factor is 0.99. A
discount factor of 0.99 reflects the medium-term planning horizon that is
often applicable in health-care settings. In this way, costs are relatively
similar over the short-term and less valued far in the future.

(b) Different number of sessions – we consider five treatment types con-
sisting of three, four, five, six and seven one-appointment-slot sessions,
respectively. The mean demand for each type is set at 2 requests per
day. All other parameters stay the same.

(c) Different session durations – we have five treatment types, all with only
one treatment session, but the duration of the session depends on the
type, requiring between three and seven appointment slots. All other
parameters remain the same.

(d) Different wait time penalties – we study five treatment types, all of them
consisting of five one-appointment-slot sessions. What varies is the wait
time penalty, taking values of $10, $25, $50, $75 and $100 per day per
appointment slot, respectively. All other parameters stay the same.

(e) Different wait time targets – we still consider five treatments types con-
sisting of five one-appointment-slot sessions each. The wait time penal-
ties are set back at $50 per day per appointment slot, but the wait time
targets are 5, 8, 10, 12 and 15 days, respectively.

(f) Different demand rates – we have five treatment types, all of them con-
sisting of two one-appointment-slot sessions. The demand rate varies
depending on the type, taking values from three to seven requests per
day, respectively. All other parameters remain the same as the base case.

17



Note that even for the small instances presented in this section the size
of the state space and the size of the corresponding action sets make a direct
solution to (9) impossible. For example, the formulation for the base case
scenario described above involves more than 1075 possible states.

Figure 2 provides a graphical representation of Cin, the adjusted cost
associated with starting a treatment of type i on day n, for each scenario.
We focus our analysis on this coefficient since it is the most relevant when
identifying the approximate optimal booking actions. The values of Hm are,
with the exception of the value for day 1, very close to zero, if not zero. This,
together with the fact that the values of Cin on day 1 are negative and lower
than the overtime cost, allow us to conclude that the approximate optimal
policy will allocate available treatment capacity according to the values of
Cin and use overtime whenever demand is present and regular-hour capacity
is not available.

Figure 2 suggests the following properties for the approximate optimal
policy: (1) to book as much demand as possible on workday 1 and then
within the wait time targets (see Fig. 2a); (2) the larger the number of
sessions, the earlier the booking (see Fig. 2b); (3) the shorter the duration
of each session, the later the booking (see Fig. 2c); and (4) the more urgent
the treatment or the shorter the wait time target, the earlier the booking
(see Fig. 2d and 2e). The first property follows from the negative values
of Cin, with the values associated with workday 1 being the most negative.
The other three properties are due to the fact that longer, more intense and
more urgent treatments have lower negative Cin values. Additionally, Figure
2f suggests that the approximate optimal policy does not depend on the
demand rate associated with each treatment type. The drops in the values
of Cin in Figure 2c are due to an abrupt decrease in the value of U∗

m in the last
days of the booking horizon. U∗

m becomes less relevant late in the booking
horizon since most treatments will be booked within the wait time target,
leaving the system empty further into the future.

The values of Hm, the adjusted cost associated with a one-unit increase
in the system total capacity on day m, are almost identical across all scenar-
ios. The value of Hm on workday 1 is equal to the overtime cost. Then, as
a consequence of the opportunity cost due to the loss of available overtime
capacity and the benefit from freeing regular-hour capacity, Hm quickly de-
creases until it reaches zero. Late in the planning horizon, the opportunity
costs vanish and Hm becomes equal to the discounted overtime cost hm.
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Figure 2: Graphical display of Cin, the adjusted cost associated with starting a treatment
of type i on day n, for the six scenarios defined in Section 6.1. Scenarios are labeled as:
(a) base case, (b) different number of sessions, (c) different session durations, (d) different
wait time penalties, (e) different wait time targets, and (f) different demand rates.
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6.2. A practical example
This section describes the potential benefits from using the proposed so-

lution approach by evaluating its performance for a practical-sized example
based on an approximation to BCCA operations using historical data.

The BCCA is a publicly funded organization with a mandate to provide
a cancer control program for the people of British Columbia, Canada. This
program includes prevention, early detection, treatment and various forms
of care. Services provided by the BCCA are delivered through five regional
cancer centers. The instance of the problem analyzed in this section is based
on all breast, head and neck, lung and prostate treatments registered and
completed at the Vancouver Cancer Center (VCC) between April 1, 2009
and March 31, 2010 (2,061 cases in total, equivalent to 60% of the total
number of treatments delivered within these dates).

An analysis of the data identified 461 different capacity requirements out
of 2,061 treatments delivered. For this reason, we chose to classify treatments
based on urgency, cancer site and treatment intent and then to represent
each class using the most frequent capacity requirements within that group.
Table 2 describes the 18 treatment types obtained through this exercise.
They account for 62% of the treatments in our data. Treatments of type
1, for example, represent urgent lung, prostate and breast palliative cases
and consist of an initial session of two appointment slots plus four additional
sessions of one appointment slot each. Appointments slots are 12-minutes
long. Note that, in practice, the values defining the optimal value function
approximation can be used to estimate the impact of today’s decisions on the
future performance of the system not only for the treatment types considered
in their computation but also for any other possible treatment type since
they represent the marginal cost of resource consumption irrespective of the
treatment type.

Between April 2009 and March 2010, the booking agents at the VCC faced
an average demand of 8.25 treatment requests per day, for the above cancer
sites. A Poisson distribution with rate 8.25 provided the best fit for the total
number of requests per day (p-value = 0.724). We assumed the demand rate
for each treatment type is proportional to the number of cases of each type
and set a maximum number of arrivals, obtained from historical data, in
order to maintain a finite state space. The demand process is described by
the arrival rates given in Table 2.

Regular-hour capacity is set at 120 appointment slots, which is equivalent
to three identical treatment units operating eight hours a day. This number
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Table 2: Characteristics of the treatment types used to evaluate the performance of the
proposed methodology. Types are grouped according to common urgency (see Table 3).

type capacity requirements
sessions/ arrival rate most frequent
slots [reqs./day] case (site and intent)

1 1×2 + 4×1 5/ 6 0.19 Lung/Prostate/Breast
2 1×2 1/ 2 0.11 Palliative
3 1×2 + 3×1 4/ 5 0.11 (Urgent)
4 1×2 + 15×1 16/17 1.43 Breast Adjuvant
5 1×2 + 15×1 + 1×2 + 3×1 20/22 0.59
6 1×3 + 15×2 16/33 0.45
7 1×2 1/ 2 1.42 Lung/Breast/Prostate
8 1×2 + 4×1 5/ 6 1.36 Palliative
9 1×2 + 9×1 10/11 0.57 (Non-urgent)
10 1×2 + 3×1 4/ 5 0.38
11 1×2 + 14×1 15/16 0.18
12 1×1 1/ 1 0.18
13 1×2 + 19×1 20/21 0.29 Head and Neck Radical
14 1×3 + 34×2 35/71 0.21
15 1×2 + 32×1 33/34 0.30 Prostate Radical
16 1×2 + 36×1 37/38 0.29
17 1×2 + 21×1 + 1×2 + 14×1 37/39 0.15
18 1×2 + 32×1 33/34 0.04 Prostate Adjuvant

is almost six appointment slots lower than the average daily demand. The
overtime capacity is 15 appointment slots or one extra hour per treatment
unit. The overtime cost is set at 100 per appointment slot, the discount factor
remains at 0.99 and no postponements are allowed. The booking horizon
and the planning horizon are set at 100 and 136 workdays, respectively. In
practice, the approximate optimal policy has proved to be independent of the
length of the booking horizon provided that it exceeds the wait time target of
the least urgent treatment type. The wait time penalties are defined in Table
3. They were specified by co-author Dr. Tyldesley, an experienced radiation
oncologist at BCCA, on the basis of existing Joint Collegiate Council for
Oncology guidelines for acceptable waits, which provide good practice and
maximal acceptable wait times for urgent, radical, palliative and adjuvant
cases (Ash et al., 2004), and estimates of the importance of radiation therapy
in relation to disease sites.

Figure 3 shows the values of Cin for treatment types 1, 4, 7, 14, 17 and
18 (one type per wait time penalty scheme) for the first 25 workdays of
the booking horizon. These six treatment types were chosen because they
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Table 3: Wait time penalties associated with each treatment type.

types
daily penalty within workday interval

[0,1] (1,5] (5,10] (10,20] (20,30] (30,40] (40,100]
1– 3 0 100 150 150 150 150 150
4– 6 0 0 0 50 100 100 150
7–12 0 0 65 100 100 100 150
13–14 0 0 80 150 150 150 150
15–17 0 0 0 40 80 100 150

18 0 0 0 50 90 100 150

Figure 3: Partial display of Cin, the adjusted cost associated with starting a treatment of
type i on workday n, for treatment types 1, 4, 7, 14, 17 and 18.

provide a good description of the overall booking preferences associated with
each wait time penalty scheme. As in the previous section, we focus our
attention on coefficient Cin since it is the most relevant when identifying the
approximate optimal booking actions. The value ofHm in this case is equal to
zero from workday 2 to far into the future. This, together with the fact that
the values of Cin on workday 1 are negative and orders of magnitude lower
than the overtime cost, demonstrates that the approximate optimal policy
for the evaluation instance will use overtime whenever demand is present and
regular-hour capacity is not available.

Figure 3 demonstrates that the values of Cin are strictly increasing for
treatment type 1 and non-monotonic for all other types. This is a direct
consequence of the differences in capacity requirements and the wait time
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Figure 4: Partial display of the booking day preferences for treatment types 1, 4, 7, 14, 17
and 18. For each treatment type, a circle indicates the most preferable booking day and
the arrows a recommended booking order.

penalties between types. Taking each type independently, the values of Cin

identify the booking day preferences associated with each treatment class (see
Figure 4). Treatments should be initiated according to these preferences and
the available treatment capacity. Figure 4 shows that treatments of type
1 should be initiated as soon as possible. Treatments of type 7, however,
should be scheduled starting with workday 1, then workday 5, 4, 3 and 2. If
a treatment of type 7 has not been scheduled within the first five workdays,
then it should be booked on the first workday with available capacity after
workday 5. The preferences for treatment types 17 and 18 make evident the
lack of capacity in the system. It is necessary to defer these two types of
treatments in order to deliver more urgent types earlier.

In order to demonstrate the impact of today’s decisions on the future
performance of the system, which is one of the main contributions of our
model, Figure 5 shows the difference between the values of Cin associated
with the approximate optimal policy and the myopic policy for the six treat-
ment types shown in Figure 3. The differences reflect the importance of the
opportunity cost that is not considered by the myopic policy. Under the ap-
proximate optimal policy less urgent treatment types such as 17 and 18 have
higher Cin values early on in the booking horizon and therefore are less likely
to be booked early. This observation supports the conclusions obtained from
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Figure 5: Difference between the capacity allocation coefficients defining the approximate
optimal policy and the myopic policy for treatment types 1, 4, 7, 14, 17 and 18.

Figure 4.
The benefits from the proposed method are evaluated by simulating the

performance of the scheduling system under the approximate optimal policy.
Results are compared to the myopic policy. The simulation length was set at
1,500 days and statistics were collected for each of 10 runs after a warm-up
period of 750 days.

Table 4 demonstrates that the approximate optimal policy outperforms
the myopic policy with respect to the total number of cases initiated within
1, 5 and 10 workdays. The same improvement is observed for most treatment
types individually. The average percentages of treatments initiated within 1,
5 and 10 workdays increase from 5% to 26%, 29% to 53% and 73% to 96%,
respectively. This is achieved at the expense of a negligible but statistically
significant increase in the average overtime utilization of 3 minutes a day.
The approximate optimal policy achieves better service levels by schedul-
ing less important treatments in terms of wait time penalties and capacity
requirements later in the planning horizon, allowing other more important
treatments to be scheduled earlier. Treatments of types 15 to 18 are booked
starting on workday 10 allowing most of the treatments of types 7 to 14 to be
scheduled within the first five workdays. The main drawback with regard to
the proposed policy is the increase in the wait times for treatments of types
1 to 3. However, the fact that urgent treatments wait slightly longer demon-
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Table 4: Simulation results. The bold font indicates the policy that provides the highest
service level for each treatment type and wait time target. Only the results for which a
significance test shows the mean service level has improved are highlighted (α = 0.05).

% of the cases initiated within
type 1 workday 5 workdays 10 workdays 15 workdays 20 workdays

myopic policy
1 70 ± 10 94 ± 4 100 ± 0 100 ± 0 100 ± 0
2 82 ± 8 95 ± 5 100 ± 0 100 ± 0 100 ± 0
3 72 ± 12 95 ± 5 100 ± 0 100 ± 0 100 ± 0
4 1 ± 2 4 ± 3 57 ± 9 98 ± 2 100 ± 0
5 1 ± 1 4 ± 3 55 ± 10 98 ± 2 100 ± 0
6 1 ± 1 4 ± 3 53 ± 10 97 ± 3 100 ± 0
7 2 ± 2 75 ± 4 100 ± 0 100 ± 0 100 ± 0
8 2 ± 2 25 ± 9 76 ± 5 100 ± 1 100 ± 0
9 2 ± 2 16 ± 10 62 ± 9 99 ± 2 100 ± 0
10 2 ± 2 37 ± 8 89 ± 2 100 ± 0 100 ± 0
11 3 ± 2 15 ± 10 61 ± 10 99 ± 1 100 ± 0
12 4 ± 2 92 ± 2 100 ± 0 100 ± 0 100 ± 0
13 1 ± 1 19 ± 12 90 ± 3 100 ± 0 100 ± 0
14 1 ± 1 16 ± 10 61 ± 9 99 ± 2 100 ± 0
15 1 ± 1 2 ± 2 54 ± 9 97 ± 3 100 ± 0
16 0 ± 0 2 ± 1 52 ± 10 97 ± 3 100 ± 0
17 1 ± 1 2 ± 2 52 ± 8 97 ± 3 100 ± 0
18 1 ± 1 3 ± 3 55 ± 11 98 ± 2 100 ± 0

total 5 ± 2 29 ± 4 73 ± 6 99 ± 1 100 ± 0

approximate optimal policy
1 66 ± 7 81 ± 8 97 ± 2 100 ± 0 100 ± 0
2 75 ± 9 84 ± 8 97 ± 2 100 ± 0 100 ± 0
3 66 ± 11 80 ± 10 97 ± 3 100 ± 0 100 ± 0
4 17 ± 6 17 ± 6 95 ± 4 100 ± 0 100 ± 0
5 11 ± 5 11 ± 5 94 ± 5 100 ± 0 100 ± 0
6 12 ± 5 12 ± 5 94 ± 5 100 ± 0 100 ± 0
7 43 ± 9 82 ± 8 97 ± 3 100 ± 0 100 ± 0
8 31 ± 9 79 ± 9 96 ± 3 100 ± 0 100 ± 0
9 27 ± 8 78 ± 9 96 ± 3 100 ± 0 100 ± 0
10 38 ± 8 81 ± 8 96 ± 3 100 ± 0 100 ± 0
11 25 ± 9 77 ± 9 96 ± 3 100 ± 0 100 ± 0
12 36 ± 7 97 ± 2 100 ± 0 100 ± 0 100 ± 0
13 23 ± 9 80 ± 8 97 ± 3 100 ± 0 100 ± 0
14 11 ± 4 77 ± 9 95 ± 3 100 ± 0 100 ± 0
15 0 ± 0 0 ± 0 94 ± 5 100 ± 0 100 ± 0
16 0 ± 0 0 ± 0 94 ± 4 100 ± 0 100 ± 0
17 0 ± 0 0 ± 0 94 ± 5 100 ± 0 100 ± 0
18 0 ± 0 0 ± 0 93 ± 6 100 ± 0 100 ± 0

total 26 ± 7 53 ± 6 96 ± 3 100 ± 0 100 ± 0

strates a willingness to trade-off a small increase in wait time for urgent
treatments for a larger gain for less urgent treatments.

The results show no statistically significant difference between the two
policies in terms of regular-hour capacity utilization. Both policies use on
average about 99.5% of the available regular-hour capacity. However, the ap-
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proximate optimal policy outperforms the myopic policy with respect to the
average discounted cost (p-value = 0.000). The average discounted cost as-
sociated with the approximate optimal policy is $121,973.57 and the average
discounted cost associated with the myopic policy is $185,843.06.

The total time required to identify the approximate optimal policy was
1 hour and 45 minutes and the total time needed to simulate each policy
was 3 hours and 20 minutes. The computer used to run our algorithm was
a 3.00GHz Quad Core PC with 16GB of RAM. The simulation model was
also implemented using GAMS 23.5 and CPLEX 12.2.

7. Conclusions

This paper describes the use of approximate dynamic programming as
a means of solving a radiation therapy appointment scheduling problem, a
problem computationally intractable using standard methods. Starting from
the linear programming approach to discounted infinite-horizon MDPs and
employing an affine structure to represent the value function in the equiv-
alent linear programming model, our methodological approach provides a
systematic way of identifying effective booking guidelines for radiation ther-
apy. These guidelines could be used in practice to significantly reduce wait
times for radiation therapy and thus to decrease the impact of delays on
cancer patients’ health.

The results presented in Section 6.2 show how the approximate opti-
mal policy outperforms the myopic policy which is an approximation of the
current practice. The percentage of treatments initiated within the clinical
benchmark (10 workdays) increases, on average, from 73% to 96% under the
proposed policy. This increase brings with it a negligible but statistically
significant increase in the average overtime utilization of 3 minutes a day.

Possible extensions to this paper involve elements of the original problem
that were excluded from our formulation. The inclusion of multiple treatment
units and unit compatibility restrictions, in addition to wait lists, would
significantly increase the complexity of the problem. We are also interested
in proving the analytical solution for the coefficients defining the optimal
value function approximation (see Appendix B), computing better bounds
on the optimality gap and applying other approximate dynamic programming
techniques to the radiation therapy appointment scheduling problem. Our
models could also be extended to consider cancellations and no-shows.
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Appendix A. Finding an initial set of feasible state-action pairs

We first find an initial set of state-action pairs, one pair per treatment type, by
combining the action-set constraints and the definition of µm(s⃗, a⃗) in (12).

(s⃗, a⃗)i ∈ argmax
s⃗∈S, a⃗∈As⃗

{ηi : ηi ≤ µm(s⃗, a⃗) ∀m, vm = ym = 0 ∀m, wi = 3mi, wj = 0 ∀j ̸= i} ∀i

Then, we iteratively add new state-action pairs to (A.1) based on its current dual
solution and the pricing problem in (14) until the value s is equal to zero.

min s (A.1)

subject to

(1− λ)
∑

s⃗∈S, a⃗∈As⃗

X(s⃗, a⃗) = 1∑
s⃗∈S, a⃗∈As⃗

µm(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[um]− s ∀m∑
s⃗∈S, a⃗∈As⃗

νm(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[vm]− s ∀m∑
s⃗∈S, a⃗∈As⃗

ωi(s⃗, a⃗)X(s⃗, a⃗) ≥ Eα[wi]− s ∀i

X⃗, s ≥ 0
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Appendix B. Optimal value function approximation

U∗
m =


U∗
m+l1

m = 1, . . . , (T1 − 1)

λ(m−1)h m = T1, . . . , (M − 1)

0 m = M

V ∗
m = 0 ∀m

W ∗
i =

Ti+li−1∑
k=Ti

ri(k+1−Ti)U
∗
m ∀i

l1 and T1 represent the length and the wait time target associated with the most
urgent treatment type, respectively. The optimal value of W0 is not listed since it is not
part of the definition of the coefficients characterizing the approximate optimal policy.
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