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as a Markov decision process. Because the state space is too large for a direct solution, we solve the equivalent linear
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1. Introduction

Globally, public health systems face increasing and lengthy
wait times for a wide range of medical services. Although
In some cases these waits may have little medical impact,
in others, excessive wait times can potentially impact health
outcomes (Sanmartin 2004). Thus, health-care managers
and policymakers face considerable political and commu-
nity pressure to better manage health-care resources in
order to reduce wait times to acceptable levels without
undue additional costs. One key lever for effective manage-
ment is through improved patient scheduling—particularly
when patients may be classified into priority categories with
different medically acceptable wait times. For example,
some conditions may require urgent immediate treatment,
whereas in other cases it may be medically acceptable to
wait up to several weeks. Because less-urgent patients are
booked further into the future, this raises the question as
to how much resource capacity to reserve for later-arriving
but higher-priority demand? Whereas this paper focuses on
scheduling diagnostic imaging resources, our methods and
results apply more broadly.

Demand for a diagnostic resource (such as a computed
tomography (CT) scanner) arises from multiple sources.
Within the hospital, demand arrives either from the emer-
gency department or from the wards. In both cases, requests
are given varying degrees of priority, ranging from “imme-
diate” to “within 24 hours.” The resource manager of the
diagnostic facility will generally have no prior knowledge
of the extent of emergency (EP) and inpatient (IP) demand
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to expect. As Figure 1 illustrates, this demand can vary
significantly from day to day. In addition, most hospitals
also serve a significant outpatient (OP) population. In the
hospital setting we studied, outpatient demand arrived in
the form of faxed requisitions from specialists. These were
accumulated and sent to a staff radiologist in batches for
priority classification. In British Columbia, there exist three
OP priority classes with allowable wait times of 7, 14, and
28 days, respectively. These targets were determined by a
panel of experts in collaboration with the BC government.
A booking clerk, who we refer to as a scheduler, collects
the prioritized requests and assigns future appointments to
each one.

The daily challenge facing the scheduler is to allocate
the available capacity between the priority classes so as to
minimize the number of patients whose wait time exceeds
a prespecified, priority-specific target, with greater weight
given to any late bookings of higher-priority demand. This
requires significant foresight because each days’ decision
will clearly impact what appointment slots are available
for future demand. If lower-priority patients are booked
too soon, then there may be insufficient capacity for
later-arriving higher-priority demand. Conversely, if lower-
priority patients are booked too far into the future, there is
the potential for idle capacity.

This research is motivated by a study that a team (includ-
ing the authors Patrick and Puterman) from the Center for
Operations Excellence (COE) at the University of British
Columbia carried out in collaboration with the Vancouver
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Figure 1.

Day-to-day variation in the number of
requests for CT scans at a Vancouver
hospital.

Coastal Health Authority (VCHA). VCHA management
were concerned that OP wait times for CT scans were
excessive. They arranged for the COE team to determine
the extent of the problem and to suggest methods for
improving throughput. Our analysis revealed that over a
specific period, a significant proportion of the scheduled
appointments for outpatients exceeded medically appropri-
ate wait-time targets; the wait times of half of the highest-
priority class, two-thirds of the second-priority class, and
three-quarters of the lowest-priority class exceeded the tar-
gets. Although our initial recommendations focused on
operations and system use issues such as increasing the
efficiency of the porter system (Odegaard et al. 2007) and
improving the scheduling of diagnostic imaging technol-
ogists, it was clear that the VCHA also faced a signifi-
cant scheduling challenge. Current practice relies entirely
on the expertise of the booking clerk, who has no com-
puter system or clear procedures supporting this com-
plex patient-scheduling challenge. Thus, we undertook to
develop a more systematic approach to patient schedul-
ing, which is described in depth here. A related nontech-
nical paper (Patrick and Puterman 2008) communicates
our results and other observations regarding wait times to
health-care managers.

1.1. Related Literature

The allocation of medical capacity in the presence of mul-
tiple patient classes has received limited attention. Com-
prehensive reviews of the broader appointment scheduling
literature include Magerlein and Martin (1978), Cayirli and
Veral (2003), Denton and Gupta (2003), and Mondschein
and Weintraub (2003). In their review of surgical schedul-
ing, Magerlein and Martin classify scheduling systems into
those that schedule patients in advance of the service date,
referred to as “advance scheduling,” and those that schedule
available patients on the day of service, referred to as “allo-
cation scheduling.” Our work and those we survey below
fall into the first stream of “advance scheduling.” An exam-
ple of allocation scheduling is the work of Green et al.
(2006), who analyze the within-day scheduling of patients

to a diagnostic facility when a fixed number of outpatient
scans have already been booked. Specifically, they seek to
determine which patient to serve next when both inpatients
and outpatients are waiting for scans.

Kolesar (1970) proposed the use of Markov decision pro-
cesses for hospital admission scheduling. He formulates
several models that are closely related to that considered
in this paper, especially one for “scheduling reservations
over a planning horizon.” However, he neither solves nor
analyzes the model, but notes that “for admissions plan-
ning models that the writer envisions treating, the lin-
ear programs would be of a size that can be handled
by contemporary computing capabilities.” Clearly he was
not envisioning solving problems of the magnitude con-
sidered in this paper. Subsequently, Collart and Haurie
(1976) develop a semi-Markov population demand model
for emergency and elective patients and formulate an opti-
mal stochastic control problem to determine an admission
policy that minimizes long-run average costs. Noting that
the “computation of a closed-loop solution appears to be
a practically insurmountable task,” they propose an open-
loop suboptimal control policy that they evaluate through
simulation. Rising et al. (1973) present a case study of
simulation models designed to test decision policies for a
scheduling challenge with two customer classes—walk-ins
and advanced appointments—for an outpatient clinic. The
focus is on the impact of various decision policies on physi-
cian utilization and patient throughput.

More recently, Gerchak et al. (1996) determine the opti-
mal number of elective patients, when facing both elec-
tive and emergency demand, to accept each day to a sur-
gical department. They demonstrate that the optimal pol-
icy for maximizing revenue is not a strict booking limit
policy, but one where the number of elective surgeries
accepted increases in conjunction with the number waiting.
Our paper differs in a number of respects. Most impor-
tantly, we consider an arbitrary number of priority classes
rather than two. Second, although a cost is associated with
each day of delay in an elective patient’s surgery, Ger-
chak et al.’s, model does not quantify the actual wait times
for these patients, and thus does not account for multi-
ple elective patient priority classes. Because our model
includes several lower-priority classes, it requires different
late booking penalty functions for each class. Our model
explicitly allows for each priority class to have a viable
booking window with class-specific costs for late booking.

Gupta and Wang (2008) consider the effect of patient
choice on scheduling in a primary-care clinic where patients
may have preference for physician and date of service.
Patients are divided into those that request same-day service
and those that seek an advanced appointment. Although a
penalty function is included to penalize the clinic if it can-
not meet the request of a patient, the model is not designed
to track patient wait times.

Extensive work has been done in revenue management—
particularly in the airline industry—on capacity allocation
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in the presence of multiple fare classes (for examples, see
Bertsimas and Popescu 2003, Brumelle and Walczak 2003,
and van Ryzin and Vulcano 2008). Although helpful in our
analysis, airline revenue management demonstrates some
significant differences from patient scheduling. Airline rev-
enue management has the advantage of concentrating on a
small number of flights over a finite horizon. In diagnostic
imaging, each potential booking day could be viewed as a
flight, and although the booking horizon is finite, it is also
continuously evolving, leading to an infinite-horizon prob-
lem. Moreover, passengers for a flight can choose which
“priority” class to enter, whereas in diagnostic scheduling,
their priority class is a function of the urgency for a scan.
Finally, airline revenue management does not consider the
impact of a given policy on passenger wait times.

An interesting alternative application of scheduling with
multiple customer classes is presented by Bertsimas and
Shioda (2003). Their work focuses on the seating of cus-
tomers at a restaurant based on the size of the group and
the presence of reservations. They seek to maximize rev-
enue while controlling for customer wait time and ensuring
equity.

1.2. Paper Structure

This paper proceeds as follows. We formulate the schedul-
Ing problem as a discounted infinite-horizon Markov deci-
sion process (MDP) and transform it into the equivalent
linear program (LP) that, if solvable, would return the
optimal value function for the MDP. However, neither the
MDP nor the LP are tractable due to the size of the state
space. Therefore, we use approximate dynamic program-
ming (ADP) techniques to produce an approximate linear
program (ALP) that has a manageable number of vari-
ables (although an unmanageable number of constraints).
We solve the ALP through column generation on the dual to
derive an estimate of the value function in the MDP. Using
this approximate value function, we derive a booking policy
that we test through simulation. We also present the sur-
prising result that, under certain very reasonable conditions
on the cost structure, we can determine the optimal linear
approximation and the consequent policy without having
to solve the ALP. We then discuss a fundamental unre-
solved issue within ADP theory—that of producing useful
bounds on the “cost” associated with using an approximate
value function. We conclude with potential extensions of
the model and policy insights.

It could be argued that an average reward MDP would
be more appropriate because the objectives are nonmon-
etary and the future should not be valued less than the
present. We instead use a discounted model with a dis-
count factor very close to one because it best reflects the
medium-term planning horizon that is most often applica-
ble in the hospital setting. By discounting only slightly, we
insure that, over the short term, costs are relatively simi-
lar, but that far distant costs are less valued. The chang-
ing nature of both supply and demand within health care,

we would argue, makes this a reasonable model. Moreover,
the discount model is tractable (in the approximate setting),
whereas the average reward model is generally multiclass
and requires new ADP methods.

2. A Markov Decision Process Model for
the Scheduling Problem

This section formulates a discounted infinite-horizon MDP
model by providing the decision epochs, state space, action
sets, transition probabilities, and costs.

2.1. Decision Epochs and the Booking Horizon

We consider a system that has the capacity to perform C,
fixed-length procedures each day. At a specific point of
time in a day, referred to as the decision epoch, the sched-
uler observes the number of booked procedures on each
future day over an N-day booking horizon and the number
of cases in each priority class to be scheduled. The book-
ing horizon consists of the maximum number of days in
advance that hospital management will allow patients to be
scheduled. In practice, this is usually not specified; how-
ever, we find that the length of the booking horizon is of
little consequence because the policy that emerges from the
model 1s independent of N provided that N exceeds the
wait-time target of the lowest-priority class.

As mentioned in the introduction, demand arises from
(wo sources, inpatients and outpatients. In practice, most
inpatient demand is known at the beginning of each day
once morning rounds have been completed on the wards.
Outpatient demand arrives throughout the day, and thus
1S not completely known and prioritized until the end of
the day. Because the scheduler will give preference to
Inpatients over outpatients regardless, we assume that all
decisions are made once inpatient demand has been deter-
mined. Consequently, outpatient demand is never booked
into day 1 (for any scenario involving inpatients and outpa-
tients). Thus, we assume that decision epochs correspond
to the beginning of each day.

Our model is complicated by the fact that the horizon
1s not static, but rolling. Thus, day n at the current deci-
sion epoch becomes day n — 1 at the subsequent decision
epoch. Because no patient is scheduled more than N days
in advance, at the beginning of each decision epoch, the
Nth day has no appointments booked.

2.2. The State Space
A typical state takes the form

S= (-;Eu j:;) — (-xh -rza =y x,-‘l.,’; yir Jr’ga AU E | y,t)1

where x, 1s the number of patients already booked on
day n, y; is the number of priority i/ patients waiting to be
booked, and 7 is the number of priority classes. The state
space, S, is therefore

S=1xy)|x<C, 1l<n< N;
0y <G, <

!'."
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where C, is the daily base capacity expressed in terms
of the number of fixed-length procedures that can be per-
formed each day and Q; is the maximum number of prior-
ity i arrivals in a given day. (Truncating arriving demand is
necessary to keep the state space finite, but the maximum
number of arrivals can be set sufficiently high as to be of
little practical significance.) We assume that each patient
requires one appointment slot and that all appointment slots
are of equal length. In our setting, the procedures required
either 15, 30, 45, or 60 minutes. Because all slots were
multiples of 15 minutes, it is not unreasonable to convert
demand into 15-minute slots, although to be more realistic
one should then consider batch arrivals. Simulation results
suggest that the impact of multiple appointment lengths 1s
minimal.

2.3. The Action Set

The scheduler’s task is to decide at each decision epoch
which available appointment slots to assign to each unit
of waiting demand. However, if this were the only action
available, then s/he would have very little recourse should
base capacity prove insufficient for the realized demand.
Thus, we assume the resource manager has the ability to
“divert” patients to an alternative capacity source at an
additional cost. This is often referred to as “surge” capac-
ity (see Patrick and Puterman 2008). Surge capacity may
be in the form of overtime or outsourcing. Alternatively,
the scheduler may postpone scheduling to the next day or
even reject some demand. Although the ethical implications
of this last alternative would clearly depend on the avail-
ability of alternative services, it is not without precedent.
In New Zealand, for example, a system has been imple-
mented where a level of priority is prespecified for which
the hospital can reasonably guarantee a wait time below
a certain target level. All other demand is returned to the
referring physician as insufficiently urgent to be booked at
this time (MacCormick and Parry 2003).

In Vancouver, most hospitais function with limited over-
time availability. If necessary, hospitals within the same
health authority and even across health authorities may act
as an additional source of surge capacity. To be realistic,
therefore, we impose a limit on the number of patients who
can be diverted per day. Thus, a vector of possible actions
can be written as (a, 7) = {4;,, z;}, where a;, is the number
of priority i patients to book on day n and z; is the num-
ber of diverted prionty i patients. To be valid, any action
must satisfy the following constraints, insuring that the base
capacity is not exceeded:

/

.+ a<C 'YRE{luu, N}, (1)
=l

that no more than C, patients are diverted,

& 5.; CE, (2)

!
= |

)

that the number of bookings and diversions does not exceed
the number waiting,

N
2 antzsy Viefl,...,l}, (3)

n=l|

and that all actions are positive and integer,
(a,2) €Z,y x Z,. (4)

We denote the action set, A, for any given state, s = (X, y),
as the set of actions, (a, z), satisfying Equations (1) to (4).

2.4. Transition Probabilities

Once a decision is made, the only stochastic element in the
transition to the next state consists of the number of new
arrivals in each priority class. Demand that was not booked
nor diverted also reappears in the next day’s demand. If the
number of new arrivals is represented by ', then the state
transition,

(%15 X25 oo XN5 Y15 Yoo oo o5 V1)

! /
— (,rz +D an,... Xy + ) ain, 0;

=] =l

N N
! f e
y|+y|_ZHIH_ZI-.----!‘F.J'—*__}‘I_ZHIH_"”:‘)‘

n=1 n=|

occurs with probability p(y") =1I1]_, p(y;), where p(y!) is
the probability that y; priority i patients arrive on a given
day. We assume that demand for each priority class 1s inde-
pendent and that each day’s demand is independent as well.
Because demand arises from multiple independent sources
(the hospital wards and the specialists in the region ser-
viced by the hospital), independence between classes seems
a reasonable assumption.

In practice, demand may be seasonal, but for the sake
of tractability, we have chosen not to incorporate this into
the model. This is not out of line with the literature as sea-
sonality is not considered in any of the models referred to
in the literature review. If seasonal patterns are significant,
the model can be resolved with different demand patterns
to determine the appropriate policy for each season of the
year. Surprisingly, the optimal policy is extremely robust
to changes in the specific data and thus re-solving may be
unnecessary.

2.5. Costs

The cost associated with a given state-action pair derives
from three sources: a cost associated with booking a patient
beyond the priority-specific wait-time target, a cost associ-
ated with using surge capacity, and a cost associated with
demand that was neither booked nor diverted. We write the
COSIS as

-

cla, z

/ ) N
=550, e, . L A0+ 10 (1 L5, = )
=\

.l‘., I 1'=| n=\
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where b(i, n) is the cost of booking a priority i patient on
day n, d(i) is the penalty for diverting a priority i patient,
and f(i) is the cost associated with delaying a priority i
patient’s booking. We represent the wait-time target for
class i by T'(i). The choice of b(i, n), although arbitrary,
should include certain characteristics. It is clearly reason-
able to assume that it will be decreasing in i and that b(i, n)
should be zero if n < T(i). Furthermore, it would seem
advisable to insure that the cost of delaying a patient’s
booking k days and then booking him/her within the tar-
get should be equal to the cost of booking the patient &
days late initially. Thus, a natural form for the booking
cost 18

n—T(i)
‘ Y ¥ f(@) forall n> T(i),
b(i, ”) = k=1
0, otherwise,

where f(i) is a decreasing function of i. There is certainly
an argument to be made for a booking cost function that
increases at a faster rate in n. We have experimented with
such a cost function and discovered no difference in terms
of the policy dictated by the model. Even with the above
booking cost function, the policy (for all reasonable values
of f(i) and d(i)) only books a patient late as a last resort.
Causing the booking cost to increase at an even faster rate
only further strengthens this policy conclusion. In fact, the
analytical results given later provide minimal conditions on
b(i, n) that include any function that increases at a faster
than linear rate.

The cost function explicitly balances the cost to the
patient in wait time and the cost to the system in having to
resort to surge capacity. The scheduler’s role is to maintain
reasonable wait times in a cost-effective manner. The spe-
cific value to assign to f(i) is difficult to determine due to
the nebulous nature of the cost of booking a patient later
than the wait-time target. Determining these costs would
be the role of the panel of medical experts who determined
the wait time targets. Of particular difficulty is the relation-
ship between the late penalty for each priority class and the
diversion costs. The diversion cost is also potentially chal-
lenging to quantify and will clearly depend on the available
source of surge capacity. The most obvious source 1s over-
time, in which case there exists a specific overtime cost
that is independent of the priority class. However, it may
be more difficult to determine the cost for other sources
of surge capacity. Fortunately, we show that for reasonable
choices of d(i) and f(i), the derived policy is very robust
to changes in these cost parameters so that the arbitrary
nature of their specific values is of less concern.

2.6. The Bellman Equation

The value function v of the MDP specifies the minimum
discounted cost over the infinite horizon for each state

and satisfies the following optimality equations for all
(x,y)€S:

I
v(X,y)= min {C(Eaf)'["]’ iy p(ﬁ’)v(xﬁzam---,xw
=]

a,7)EA: - —
(a.2)€Az ; velD

I N
—1—2:1!-,..,”0;}’; T '—Zaln_zl="‘*y;

i=l n=|

_{_.}:f'—"zam_z!)}* (5)

n=|

where <y is the daily discount factor and D is the set of
all possible incoming demand streams. It 1s here that “the
curse of dimensionality” becomes apparent. In particular,
the dimension of the state space is C'II._, Q,. Reasonable
values of C,, N, I, and Q lead to very high dimensions,
making a direct solution impossible.

3. Approximate Dynamic Programming

Over the past few decades, research in approximate dynam-
ic programming has focused on developing methods for
addressing the curse of dimensionality. These methods
restrict the value function to lie within a specified class of
functions and then seek to find the optimal value function
within this class. Challenges include determining the best
class of functions to use for a given problem, determining
the optimal approximation within a chosen class of func-
tions and bounding the gap between the cost of the policy
determined by the approximate solution and the true cost
had we been able to determine the optimal policy. Although
recent work by Klabajan and Adelman (2007) promises to
provide more rigor to the appropriate choice of approxi-
mating class, this issue currently remains as much an art as
a science.

Simulation and analytical approaches have been used to
determine the optimal approximation within a given class.
Simulation-based solutions generate sample paths of the
problem and seek to update the parameters that deter-
mine the chosen class of functions in an iterative fashion.
Such methods suffer from the fact that not only 1s the
true value function approximated, but a further source of
approximation is introduced through sampling error. This
paper focuses on an analytical solution first developed by
Schweitzer and Seidmann (1985), with more recent work
by Adelman (2005, 2004) and de Farias and Van Roy
(2004b, a; 2003). The method of solution proceeds as
follows:

|. Transform the MDP into its equivalent LP.

2. Approximate the value function by assuming a spe-
cific parameterized form.

3. Use the chosen approximation in the LP to create the
ALP.
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4. Solve the ALP to obtain the optimal linear value func-
tion approximation, v, p.

5. Use v, p to determine the “best” action for any visited
state.

A fundamental result in MDP theory (Puterman 1994)
implies that solving the optimality Equation (5) is equiva-
lent to solving the following LP for any strictly positive a:

max Y a(, §)v(F, ) (6)

X.veS

subject to

/ /
f"(av E) T Z l:p(d)u(x’.! 2 Zaﬂr DR £/ Tzt ZaENTO;
rFE.[) =l =1
N

N
}’; +}I] —Zﬂ!” _'E| ..... :‘.';- +}1_,r o Zam _Zf)] ;U(E,i)

n=| =1l

V(a.z) € A;; and (X,y)€S. (7)

Without loss of generality, we assume that « is a proba-
bility distribution over the initial state of the system. The
conversion to an LP does not avoid the curse of dimen-
sionality because the LP has a variable for every state and
a constraint for every state-action pair. A possible solution
Is to approximate the value function, v, with a linear com-
bination of basis functions. As mentioned earlier, choosing
a good set of basis functions remains a challenge within
ADP. A reasonable starting point in our model is the fol-
lowing affine approximation:

N /
U(‘E! j’::) — Wﬂr + z v::‘rn T Z WEJ“E' (8)
i=l

n=|

The advantage of this simple approximation is that
the parameters are easily interpreted. V, represents the
marginal infinite-horizon discounted cost of an occupied
slot on day n, and W, represents the marginal infinite-
horizon discounted cost of having one more patient of pri-
ority class i waiting to be booked. We impose the further
restriction that all V, and W, are nonnegative, whereas W,
1s unconstrained. Reformulating the LP in terms of this
approximate value function yields the following ALP:

N /
n}aﬁzﬂ(f,_ﬁ)(WH+ZK,I”+ZWE_}7;> (9)
VoW 2.7 n=| i=1
subject to

N / & N—I
W{}“{'Z Vu"ru-[-zwfyi ==k Z |:P(d) (WU_[_ Z V:u
n=|\ j=] Jeﬂ n=|

! I N
: (‘xn+l +Z‘a:’.u+l) +ZWJ (y:'l'}’, 3 Zain _ZE)):|
jo= | j=]

n=|

<c(a,z) VY(a,7)eA,, and (X,y)€S,

V.W>0.

Rearranging terms and using the assumption that « 1s a
probability distribution transforms the ALP into

n.“ﬂ.xan+iEu[XnM+iEa[}?]Pﬂ} (10)

n=|

subject to

N !
(1 -—’)I)W[;.-I-ZK, ('xn i ‘Y'xn+l _Tzﬂf.n-i-l)
i=|

n=|

i N
+ZW,-((1 = ?)y5+w(2a,-,,+zf—E[}',.])) <c(a,?)
=]

n=|

V(E, E) = A.i".f and (.i:._ ’Tr:) € S,
V,W>0.

The additional variables x,, and a; y., are constrained
to be zero (because no bookings occur beyond day N). X,
and Y; are random variables, with respect to the probabil-
ity distribution «, representing the number of appointment
slots already booked on day n and the number of prior-
ity i patients waiting to be booked, respectively. Although
the ALP has only N + I + | variables, the number of con-
straints remains intractable. We therefore formulate the dual
of the ALP:

min Y X(X,y,a,7)c(a,z) (11)
(X,V)€S
{&.E]Eﬂf.;
subject to
(1-7) Y X(@&5y,6,72)=1, (12)
(x,v)ES

(a, E}'EHJ'.;:

!
Z X(E*;!E!Z‘)(xu_‘yxrﬁl_TZ{IMHI) ;Eﬂ[xr:]

(¥, v)eS i=1

{E*E)Eﬂ_;’_;
Vit LN (13)
N
D X(xay,mi)((l-*r)y;+’y(Za,-..,+z,-—E[K-]))
(f_ﬁ]eﬁ n=l|
{5.5)61"1;._:;
SE[Y] Vi=l,...l, (14)
X >0. (15)

Solving the dual has the advantage of a reasonable number
of constraints, but at the expense of creating an intractable
number of variables—one for each state-action pair. Col-
umn generation solves this problem by starting with a small
set S’ of feasible state-action pairs to the dual and then
(using the dual prices as estimates for W,,, V., and W,) find-
ing one or more violated constraints in the primal. It then
adds the state-action pair(s) associated with these violated
constraints into the set §’ before re-solving the dual. The
process iterates until either no primal constraint 1s violated
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or one is “close enough” to optimality to quit. In general,
it may be difficult both to find an initial feasible set §’
and to find a violated primal constraint. Fortunately, in our
model, an initial feasible state-action pair for the dual con-
sists of a state with no available slots and where all incom-
ing demand is diverted. Finding a most violated primal
constraint involves solving the following integer program:

2(V, W)

1 N
= min [Zb(f,n)am+Zd(i>z;+f‘(f)(y,-—Za,-u—zf)
X, Ve, . :
(E.EjEﬂf‘; n i=1 n=|

N f
== Z Vn (.JC" = T('xu+l) = Z‘ai.n+l)

n=| i=]

_ZI:W;'((I—T)J’;+’}I(iai,,+zf—ﬁ‘[}’,]))

j=| n=|

= —T)Wu]
Rearranging terms yields
2(V, W)
N !
e (ﬂ?}gb I:Z(Z(b(h”)_l_yﬁl—]_f(l)_ywx)am
{J.E}Eﬂ;{ ip=); iy
(Wi Vo),

/
+Z((d(f) - f@)—yW)z;+(f(@)+yW,—W)y,)

+) YW.E[Y]-(I "'}')Wﬂ]- (16)

=]

The coefficients on a;, in Equation (16) have a nice intu-
itive interpretation in terms of balancing the costs versus
the benefits of each action. For each action a;, there 1s a
cost, b(i,n) +yV,_,, due to a (possibly) late scan and the
loss of available capacity tomorrow as well as a benefit,
f (i) +yW,, due to the fact that the booking decision is not
delayed and the patient does not reappear in tOmoOIrrow'’s
demand. For each action, z;, there is a cost, d(i), due to
diverting the patient, which is likewise weighed against the
benefit of not delaying the booking decision and therefore

not having the patient appear in tomorrow’s demand.

4. The Form of the Optimal Linear Value
Function Approximation

Once the dual is solved, the prices associated with each
constraint determine the coefficients in the best linear value
function approximation (denoted by wv,;p). Investigating
the properties of solutions to a wide range of numerical
instances led to a conjecture of the form of the optimal
primal solution. This leads to the theoretical results in this

section, which provide interpretable conditions under which
the optimal solution to the primal ALP, v, p, can be solved
directly.

The form of v, depends to some extent on the nature
of the cost functions. Earlier discussion suggested that a
reasonable choice for the booking cost is

n—T(i)
k—1 g :
: Y ¥ f(i) forall n>T(i),
b(I: H) —— k=1
0, otherwise.

(In fact, we present some minimal restrictions on the form
of b(i, n) to achieve our results. These conditions include
any scenario where late costs increase at a faster-than-linear
rate in the days.) More critical is the form of the cost for
diverting patients to an alternative capacity source. If that
alternative capacity source is overtime, then it would seem
reasonable to assume that the diversion cost i1s independent
of i because overtime costs are a function of the length
of the scan and not the priority of the patient. Alterna-
tively, if diversion means that demand is sent elsewhere
(i.e., rejected by the hospital in question), then it would
seem reasonable to assume that the diversion cost 1s strictly
decreasing in i. Such a cost function reflects the fact that
demand that is sent elsewhere often faces an additional
delay, and thus is more costly for higher-priority demand.
We present two theorems that give the optimal form of v, p
for these two scenarios.

4.1. The Optimal Linear Value Function
Approximation with Overtime

The first theorem gives the optimal linear value function
approximation, v,;p, for the scenario where d(i) is con-
stant. (The proof appears in the appendix.)

THEOREM 1. Assume that the cost of diverting a patient is
constant for all i (i.e., d(i) =d), T(i) is decreasing in i,
and the late booking cost, b(i, n), is nondecreasing in n
and nonincreasing in i with b(i,n) =0 for all n < T(i).
Assume further that

b(i,n)+y""Wd > b(i, T(i)) + """ (17)
for all n > T(i) and for all i;

/ T(i)=n

C,

N
Y m—n|*t
Z l - ,.}, ITU]}H)"*' + z ’}‘[ ] E{:[Xn] < ]. eal (18)
i=1 m=n
forall n>2T(1); and
/ T()=T(1) N 4 C
O{ZT Af__l_z.},[n-?'{l}] EQ[X,,]_T(I)Cl—l—!—
i=l l % n=| | =l
G,
S (19)

L=t
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where Iy ., is equal to one if T(i) > n and zero other-
wise, A; is the arrival rate for demand from priority class
i, C, is equal to the base capacity, C, is the surge capacity
(i.e., overtime), and vy is the discount rate. Then, the opti-
mal linear value function approximation for the discounted
MDP will have the following form:

d forall ne ;... IT(1)}

V.= yV,_, forallne{T(1)+1,...,N—1},
0 for n=N,

Wi=Vp, forallieil,..., 1},

I FO=T
¥ vC,
W =d( E A —T(1)C ~—--—-—-——-)‘
0 Ti=l [ ; 1 — v

(20)

The above form of v, p has considerable intuitive appeal.
From a cost standpoint, the marginal cost of each slot on
days up to and including 7(1) are identical; thus, one
would expect to value these days equally. It is also intu-
itively appealing to assign a value equal to d for these days
because the availability of this capacity allows the manager
to avoid using surge capacity. After day 7°(1), the value of
an appointment slot on day » is equal to vy times the value
of an appointment slot on day n— | because the capacity on
day n this decision epoch will be the capacity on day n — 1
by the next decision epoch. For this reason, V, = vV, _, is
reasonable.

Equation (17) requires that the cost of booking a patient
on day n > T(i) and then performing an overtime scan
n— T(1) days into the future be greater than the cost of
booking on day 7'(i) (assumed to be zero) and then per-
forming an overtime scan 7' (i) — T(1) days into the future.
This reflects the fact that by booking a patient late, the
scheduler has essentially only delayed the need for over-
time by n — T(i) days. Note that the less that future costs
are discounted, the more likely that Equation (17) will be
satisfied. For example, with y = 0.9, Equation (17) will
be violated if the cost of overtime, d, is approximately
10 times greater than the daily cost of a late booking, f(i).
If y=0.99, then d needs to be more than 100 times greater
than f(i). Therefore, the high choice of y appropriate for
the health-care setting implies that even with a small late
booking penalty, Equation (17) will hold.

In traditional DP theory, the solution to the LP i1s known
to be independent of « provided a is strictly positive for all
states (Puterman 1994). However, in ADP, this is not the
case (see Adelman 2004 and de Farias and Roy 2003), but
the nature of the dependence of the optimal approximation
on « is not very well understood. In this instance, inter-
preting « as a probability distribution over the initial state
of the system gives Equations (18) and (19) concise inter-
pretations. Any choice of a satisfying these two equations
will yield the same v,, ,. We leave until later a discussion
of the impact of violating these conditions.

Equation (18) requires that for any given day, n > T(1),
there is sufficient base capacity to schedule the average

demand for any priority class with a wait-time target ex-
ceeding n. In essence, this insures that overtime i1s only
required for the highest-priority class. This condition is
unlikely to be violated unless the system is either extremely
undercapacitated (in which case the overtime requirements
will become prohibitive) or the highest-priority class gener-
ates negligible demand in comparison to the other ciasses.

The first two terms in the body of Equation (19) equal
the present value of the expected demand over the infinite
horizon plus the present value of the expected number of
appointment slots initially filled. The last two terms repre-
sent the present value of the total base capacity over the
infinite horizon. (Recall that all slots are of equal value up
to day 7'(1) and are discounted by 7y thereafter.) Thus, stat-
ing that the body of Equation (19) has to be greater than
zero is equivalent to insuring that total expected demand
exceeds total available capacity. In other words, capacity
1s a legitimate constraint. Stating that the body of Equa-
tion (19) has to be less than C,/(1 — ) insures that there
Is sufficient overtime capacity available to insure that ap-
propriate scheduling can avoid exploding queues. This
upper bound is of significant practical importance because
it determines the necessary overtime capacity commitment
for a given base capacity in order to meet the wait-time
targets.

Although the three conditions place significant restric-
tions on the parameter values, they nonetheless allow for a
wide range of realistic scenarios. Their intuitive interpreta-
tions also demonstrate their plausibility. Even if these con-
straints are violated, the ALP still yields a value function;
it simply does not have the form given in Theorem 1.

4.2. The Optimal Linear Value Function
Approximation with Rejected Demand

A similar analysis for the scenario where d(7) is decreasing
in { yields the following theorem.

THEOREM 2. Assume that the cost of rejecting demand,
d(i), satisfies

d(i) > y"~"04(1) (21)

for all i < I; that T(i) is decreasing in i; and that the
late booking cost function is nondecreasing in n and non-
increasing in i with b(i,n) =0 for all n < T(i). If

Yy O=TOp(i, n) +y*TO4(T) > d(1) (22)
for all n > T (i) and for all i
! ?T{f}-n N . &
E l IT(I")::-HAEI Z ?lm_ﬂ[ EH[XH] < 1 I (23)
=l S m=n o
forall n>T(1); and
I A, T@)-T(1) N ; C
1 1 g M+ A TONE [X,]-T(1)C, -
i=1 l — ) ri=| L= ‘Y
r(n-r()
i Cz; (24)

h=p
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then the optimal linear value function approximation for : L !

the discounted MDP will have the following form: = G r.?éﬂ ) 2.2 A+ Z;z; { + constant. (26)
2 8 Up=1i=I i=l

yTO-Tq(1)  for all ne{l,...,T(1)},

V=1 9V forall ne{T(1)+1,...,N—1},
0 for n=N,
WJ=VT{” fﬂr ﬂ” iE{I,...,I},
f T()=T(1) C
W = T =T g * A.—T(1C _L)‘
=710 (Y a- T - 12
(25)

The intuition is similar to that in the overtime scenario.
Note, however, that the driving cost factor is the cost of
redirecting the lowest-priority class, d (7).

5. Deriving a Policy from
the Approximate LP Solution

In this section, we discuss how to derive a policy from the
solution to the ALP. We refer to this policy as the approx-

imate optimal policy or AOP. Further, we show that the
AQOP has an elegant and intuitive structure for a wide range

of cost parameters.

Traditional LP methods for directly solving an MDP
yield the complete optimal policy by setting the probabil-
ity of using action a in state s equal to the value of the
dual variable, X(s, a), divided by the sum of the dual vari-
ables over all possible actions in state s. The viability of
this method depends on the fact that a direct solution to
the LP will have at least one positive variable, X(s, a),
for all states s. In solving the ALP through column gen-
eration, only a very small percentage of all possible states
are evaluated, and thus the traditional method for deriving
a policy fails. Instead, in the ADP setting, we insert v, p
into the right-hand side of the optimality equation (5) and
then solve for the optimal action (a, z) in state (X, y) as
needed in practice or in a simulation. This involves solving
the following integer program:

I N
min I . "b(#:n)a;..

(ﬁ,E)EA,;._.;. =1 n=]

/ N
¢ Z (d(i)z,- + (i) (J’f = Zﬂm -~ Zf))
f=x] n=I
" N /
+}’ Zp(d)l:wﬂ_l_ Z Vn ('xn-f-l +Zaf,r:+])
n=I| i=l|

deD

! N
+Z“/f(y;+yf_zam_zi)} }
] n=I

=]

(&*“]E’ti.}"

= min {ZZ(b(f,ﬂ)+'}’Vn—l - f()—YW)a; ,

n=li=l

+i(d(f)—f(f)—ww,-)z.-}+constam

i=1

For each priority class i, the choice of action in the
AOP depends on the coefficients, A;,, and Z,. Clearly,
the AOP will only book patients of each priority class
into those days for which A;,, < 0 and will only use
overtime for those priority classes for which Z, < 0.
Because the coefficient A;; is strictly less than zero for
all i, any capacity available on day 1 will be used by
whatever demand is available. As the following proposi-
tion states, under the conditions outlined in Theorem 1,
it 1s possible to derive a number of relevant properties
of these coefficients. When these conditions hold, the
AOP can be determined without solving the above integer

program.

PROPOSITION 1. Suppose that the diversion costs d(i) =
d for all i, the booking cost is nondecreasing in n and
nonincreasing in i with b(i,n) =0 for all n < T(i) and
for all i; and that Equations (17) through (19) hold.
Then,

e A, is increasing in i.

e A, is convex in n with minimum at n =T (i).

e A, >0 for all n > T(i) + 1 with equality at
n=T(~)+1.

e Z, iIs increasing in i.

Moreover, for n < T(i), the coefficient A;, will be nega-
tive if and only if

f(!) = (,}’[H—T{]}“IIJ"*{'I = ’}/TUJ-T(I]-i-l)d, (27)
and the coefficient Z; will be negative if and only if
£(i) (1 —y" g, (28)

As a result of Proposition 1, there exists an interval,
(LB(i), UB(i)), for each priority class with the property
that A;, is only negative for n € {1 U (LB(i), UB(i))}.
Moreover, UB(i) = T (i) and LB(i) is equal to the small-
est n satisfying Equation (27). The following theorem
describes how to implement the AOP.

THEOREM 3. If the diversion costs d(i) = d for all i, the
booking cost is nondecreasing in n and nonincreasing in i
with b(i,n) =0 for all n < T(i) and for all i; and Equa-
tions (17) through (19) hold, then the AOP may be imple-
mented as follows:

e Book patients in order of priority class.

e Book as much priority 1 demand as possible into the
interval (1,T(1)) starting with day 1 and working up to
day T(1).

e For each successive priority class, book incoming
demand into any available slots in the interval {1 U
(LB(i), UB(i))} starting with day 1, then day UB(i), and
working down to day LB(i).

e [f there is any remaining demand, use overtime for
a given priority class only if Equation (28) is satisfied
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Figure 2.  AOP with overtime (/ =5, f = (20, 20, 18,
9:6), T =(1,2,7,14,21), d= 100); black
squares indicate available booking days for
each priority class.
5 = E E o-5-5-0-0-9-8
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and giving precedence to higher-priority demand should
the overtime capacity constraint be an issue.
e For all remaining demand, delay booking.

Figure 2 provides a graphical representation of the book-
ing intervals (LB(i), UB(i)) for a scenario with five priority
classes and with a specific combination of parameters. Day
Zero represents overtime.

The policy can be fully characterized by 27/ + 1 num-
bers (the interval (LB(i), UB(i)) for each i and the lowest-
priority class for which overtime is used), all of which can
be determined analytically without solving the integer pro-
gram given in Equation (26). Unless the facility is signif-
icantly under capacity, the lower bounds on the booking
intervals will not be a factor because it is unlikely that day
T (i) will be filled by lower-priority classes because higher-
priority demand has yet to be booked into that day. Thus,
the probability of the whole interval (LB(i), UB(i)) being
filled is remote in most realistic settings. We briefly dis-
cuss the policy implications of violations of the conditions
in Theorem 1.

[f Equation (18) is violated (but the other conditions
are satisfied), then empirical results suggest V, = d for
all n < T(i"), where T(i') is the first wait-time target for
which Equation (18) is satisfied. The resulting policy treats
patients in classes | through ' similarly. If Equation (17)
is violated for a given priority class j and a given day m,
then it 1s violated for all priority classes lower than class j
and for all n < m;. The resulting policy will book patients
of priority class j and lower late (how late depends on the
value of m;) while maintaining the wait-time targets for
higher-priority demand. If the lower bound in Equation (19)
is violated, the value function for the ALP is identically
zero, and thus the “optimal” policy books patients on a
first-come, first-served basis. In this case, capacity 1s not
a significant limitation, and thus demand can be met as it
arrives. If the upper bound in Equation (19) is violated,

then the “optimal” policy trades-off booking low-priority
patients late to leave greater capacity for higher-priority
demand. However, in the long run, costs explode because
the system simply does not have sufficient capacity to deal
with the incoming demand.

A similar analysis for the case with d(i) decreasing in i
yields the following partial characterization of the AOP:

e Book as much priority | demand as possible into the
interval (1, 7(1)) booking first on day 1, then day 2, and
continuing to day 7(1).

e For each successive priority class except the lowest
one, book incoming demand into any available slots in the
interval {1 U(LB(i), UB(i))} starting with day I, then day
UB(i), and working down to day LB(i).

e If, for any priority class i < /, there is insufficient
capacity in (LB(i), UB(i)) to meet all priority ¢ demand,
then delay booking.

This is, however, not a complete policy because it fails
to specify the scheduling of the lowest-priority class. This
cannot be determined without solving the integer program
given in Equation (26). Thus, to implement this policy
requires the availability of integer programming software.
Fortunately, solving Equation (26) can be done within a
reasonable time frame (see discussion below), and thus the
necessity of solving it repeatedly is not an insurmountable
stumbling block.

5.1. Ethical Considerations

Three features of the policy may raise some concerns re-
garding the equitable nature of the proposed scheduling
policy. First, because lower-priority demand is booked in
reverse order from day UB(i) to LB(i), there is the poten-
tial for later-arriving demand to be given an earlier scan
date. In practice, however, this is not an issue because 1t 1s
only in rare instances that day UB(i) is ever full for priority
classes i > 1. Thus, invariably, the wait time for lower-
priority patients is exactly UB(i) days. The only instance
where this might become an issue is if capacity does not
exceed the average demand even after excluding the
highest-priority class, but then this is precisely the condi-
tion imposed by Equation (18).

The other two potentially worrying features of the policy
raise concerns only when there are no inpatients (that is,
the wait-time target of the highest-priority class is not the
same day the request is placed). In such a case, any demand
may be used to fill available capacity tomorrow because
by tomorrow that capacity will cease to be available. Thus,
lower-priority demand may in fact get expedited service
simply because the request is placed on the eve of a day
with excess capacity. This could be argued to be unfair, but
the alternative is simply to lose that capacity. One could
potentially shuffle appointments to maintain equity, but the
additional administrative burden hardly seems worth the
effort. In the presence of inpatients, this is not an issue
because only inpatients can be booked the same day the
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request is placed, and therefore excess capacity 1s only ever
used by the highest-priority class.

The final feature concerns the use of overtime. Again, if
inpatients are present, outpatients are, in any realistic set-
ting, never given overtime slots; therefore, there is no issue
of equity. However, in the absence of inpatients, it 1S pos-
sible that a high-priority patient arriving at a time of high
congestion receives an overtime slot and thus gets expe-
dited service, when a patient of the same priority class who
arrived a day earlier was perhaps forced to wait 7(1) days.
Again, if such inequities are of significant concern, then an
alternative is to shuffle appointments in order to maintain
a first-come-first-served policy within each priority class.
However, the added administrative burden again would
seem to outweigh the benefit; especially considering that
even without reshuffling no patient 1s waiting longer than
the medically desirable wait-time target. More reasonably,
one could modify the policy so that overtime slots are
booked T(1) days in advance, thus insuring that any patient
who receives an overtime slot waits at least as long as any
patient who does not. This would maintain equity and also
allow for some advance planning of overtime requirements.

6. Simulation Results

Because the AOP was derived through ADP, there i1s no
guarantee of its optimality. This section reports the results
of using simulation to investigate the behavior of the pol-
icy in a variety of scenarios. Even though we optimize
with respect to costs, we use the simulation to investigate
operationally meaningful performance measures including
the percentage of patients exceeding wait-time targets, the
percentage of patients who are diverted, and system uti-
lization. We do not consider any scenario where more
than one source of surge capacity is available (i.e., over-
time and rejected demand). Although this is certainly a
possibility, the robustness of the overtime policy shown
through the simulation results suggests that, in fact, using
overtime as the sole source of surge capacity 1S most
advantageous.

The coding of the column generation algorithm required
to solve the ALP was done in AMPL with CPLEX as the
solver. For scenarios booking 30 days in advance, up to
five priority classes and up to 200 available scanning slots
a day, the time to solution was less than five minutes.
The simulation of the scheduling process was also done
in AMPL/CPLEX because it involves solving the integer
program given in Equation (26). The simulation length
was 20,000 days with statistics collected after the first
5,000 days. Each scenario was run 10 times, with the result-
ing 95% confidence interval provided for each statistic. The
run time for a simulation of 20,000 days was approximately
I5 minutes on a good laptop PC. The discount factor is set
at 0.99 for all simulation scenarios.

6.1. A Small Outpatient Clinic

Consider a small outpatient clinic with a capacity of 10 ap-
pointment slots per day with a maximum of four patients
diverted per day. (To satisfy Equations (19) and (24), one
only needs C, = 1.) The clinic divides demand into three
priority classes with wait-time targets of 7, 14, and 21 days,
respectively, and chooses a 30-day booking horizon. De-
mand for each priority class is Poisson with means 5, 3,
and 2 respectively. (The Poisson distribution is truncated
at three times the mean for each priority class in order to
maintain a finite state space.) In such a scenario, average
demand equals base capacity, and thus a lack of capacity
Is a legitimate concern.

As stated in Theorems 1 and 2, the simulation results
are robust to changes in the exact values of the diver-
sion costs and the late booking penalties provided Equa-
tion (17) is satisfied (if diversion costs are constant) or
Equations (21) and (22) are satisfied (if diversion costs are
decreasing in ). Estimates for the cost of overtime vary
between $30 per scan (the additional overtime salary of two
CT technicians for a 15-minute scan) to as high as $150
per scan (if one includes other costs). For a discount rate of
0.99, this implies that even at the high end of the scale, late
booking costs need only be set at two per day or higher for
the optimal linear value function approximation to have the
form given in Theorem 1 and for the AOP to be as given
in Theorem 3. In this scenario, overtime cost, 4, 1s set at
100 and the late booking penalties, f(i), are set at 20, 10,
and 5. In the case where d(i) is decreasing in i, the cost
of diverting patients is set at 100, 50, and 25, and the late
booking costs are kept the same.

We compare the AOP to a strict booking limit policy
where each priority class is booked into a given day only if
there is a predetermined number of appointment slots still
available. The optimal booking limit policy (determined
through enumeration) for the constant diversion costs is to
book priority 2 patients into a given day only if seven slots
are still available and to book priority 3 patients only if
nine slots are still available (no booking limit is imposed
on day one). For the scenario with decreasing diversion
costs, the optimal booking limit policy is to book priority 2
patients if there are six or more slots still available and to
only book priority 3 patients if there is available space on
day one. The booking limit policy resorts to surge capacity
only if there is no available capacity for a given priority
class within the booking horizon. Results are summarized
in Table 1.

Both the overtime policy and the rejection policy outper-
form the corresponding fixed booking limit policies with
respect to the percent of cases booked late (in the case
of OT); the percent of cases served through OT/diverted
(both cases); and in capacity utilization (both cases).
In terms of capacity utilization and the number of patients
who are diverted, it is clear that the AOP in the overtime
case also outperforms the AOP in the rejection case. The
overtime policy reacts to high levels of demand by using
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Table 1. A comparison of AOP and booking limit policies in the overtime and excess demand
rejection cases with respect to three performance measures.
AOP Booking limit AQOP Booking limit
Priority overtime d =100 removal d = (100, 50, 25)
Criteria class d =100 BL=(1,7,9) d = (100, 50, 25) BL=(1,6,-)
Percent Pl 0.22 +0.04 0 494 +1.32 0
late P2 0 0.42+0.17 0 0
P3 0 47.78 +£0.38 0 0
Overall 0.11 +0.02 0.69x+0.13 2.47 £+ 0.66 0
Percent Pl .56 1 0.07 0 0.331+£0.09 0
diverted P2 0 0 0 0
P3 0 20.97 £0.78 11.64 +0.32 50.32 £ 0.66
Overall 0.78 £ 0.07 4.204+0.16 2.4940.11 10.44+0.13
Utilization 99.05 £ 0.08 95.73+0.14 07.34 £ 0.09 89.86 £0.16
percentage

Note. P1 refers to priority class 1, P2 to priority class 2, and P3 to priority class 3.

overtime to serve the highest-priority class. The rejection
policy, on the other hand, seeks to anticipate high levels of
demand by diverting the lowest-priority class preemptively.
Because it is easier to react than predict, the AOP in the
overtime case generally performs better.

If the AOP policy is implemented with the modification
that surge capacity is used only if absolutely necessary
(that is, when there is no available capacity in the booking
horizon), then the results are dramatically worse, with over
50% of priority 1 patients booked late as well as significant
portions of the lower-priority classes. It is worth noting that
the current practice of simply postponing the booking of
any demand that cannot be met will in fact perform worse
than this “reject as a last resort” policy. The sole reason
that costs do not tend to infinity under the current policy
is that demand is negatively correlated with expected wait
time. Thus, there is an implicit rejection of demand occur-
ring under current practice, but the decision as to when to
reject demand is made not by the resource manager, but by
the specialist doctors who recommend the scans in the first
place.

6.2. A Large Outpatient Clinic

Increasing the size of the outpatient clinic to 60 scans

not affect the optimal linear value function approximation
(and by extension the AOP) because the conditions are
independent of changes in the number of priority classes
and reasonably robust to changes in the wait-time targets.
Column 1 of Table 3 presents the simulation results for a
scenario where capacity is set at 120 scans per day, inpa-
tient (IP) demand is Poisson with rate 60, and the outpa-
tient (OP) demand is the same as in the previous scenario.
Following current practice at the Vancouver hospital, the
wait-time target for inpatient demand is set at zero. That 18,
[P demand is satisfied the same day the request is placed.
Thus, day 1 now represents the current day. Because OP
demand comes in the form of faxed requisitions throughout
the day, it is necessary to impose the further constraint that
no OP demand can be booked on day 1.

The introduction of inpatient demand leads to a dra-
matic increase in overtime requirements. Whereas for an
outpatient clinic, an average of one overtime scan every
20 days suffices, for a hospital serving both inpatients and
outpatients an average of four overtime scans per day is
needed. The theoretical overtime capacity determined by
Equation (19) jumps to 13. Decreasing the wait-time tar-
get of the highest-priority class from seven days to one

per day and letting the lower-priority classes represent the Table 2.  Comparison of AOPs in a larger outpatient
larger portion of demand leads to similar results for the clinic.
ove.rtime policy with a marl'(ed im‘pmvement in the rejemicfn Privrity ‘Ouetfie policy.  Rejection policy
policy. Table 2 presents simulation results for a scenario Criteria class 4 =300 d = (100, 50, 25)
where demand is Poisson with rates 10, 20, and 30 for each
priority class, respectively. Diversion capacity is set at 4 Percent Pl 0.42+0.48 0
(although 3 is all that is required to satisfy Equations (19) tate g g H
and (24)). Again, varying the diversion cost (be it overtime Overall 0.07 +0.02 0
or rejection) .d'ﬂes nt:':-t grf-:atly affect the results, prc:vided Perceiit Pl 0.48 +0.15 0
that the conditions given in the two theorems are satisfied. diverted P2 0 0

P3 0 1.42 +0.06
6.3. The Hospital Setting Overall 0.08 4 0.02 0.79 +0.03
Theorems 1 and 2 prove that adding inpatients who require Utilization 99.85+0.04 99.23 +0.03

percentage

scans immediately, or by the next day at the latest, should
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Table 3.  Comparison of AOPs in the presence of inpa-
tient demand.
OT policy  OT policy Rejection policy
Priority (100% HIP) (90% HIP) d = (100,90,
Criteria class d =100 d =100 80, 40, 20)
Percent HIP 1.494+0.06 1.07+0.05 0.17£0.01
late LIP n/a 0 n/a
OPI 0 0 0
OoP2 0 0 0
OP3 0 0 0
All  0.65+0.03 0.54+0.04 0.08 +0.01
Percent HIP 673008 5.54+0.09 2.65+0.04
diverted LIP n/a 0 n/a
OP1 0 0 0
OP2 0 0 0
OP3 0 0 29.52£0.06
All  293+0.04 2.5940.04 8.70 £0.02
Utilization 96.6 £0.03 97.47+£0.03 91.27+0.06
percentage

oreatly reduces the resource manager’s ability 1o “smooth”
out the variability in demand, thus increasing the over-
time requirement. Patrick and Puterman (2007) used sim-
ple probabilistic arguments and simulation to explore the
impact of introducing some flexibility into the scheduling
of the IP class. Such flexibility is available at the Vancouver
hospital, where there is an IP class for patients whose scans
could be delayed one day. However current practice is to
ignore this flexibility and perform all IP scans on the day of
the request. Consider, therefore, two IP priority classes—
a high-priority class (HIP) with a wait-time target of zero
and a low-priority class (LIP) with a wait-time target of 1.
Column 2 of Table 3 presents the results when 10% of the
total IP demand is classified as LIP. It demonstrates the
significant impact of even this small amount of flexibility
in IP scheduling on the cost associated with maintaining
wait-time targets.

Finally, column 3 of Table 3 presents the results for the
scenario where diversion costs are decreasing in i. The
maximum number diverted in a day must be at least 16 to
satisfy Equation (24). Not surprisingly, the ability of the
rejection policy to anticipate congestion i1s severely ham-
pered, leading to a higher number of diverted patients as
well as a portion of late patients.

6.4. A Large Hospital

Finally, the Vancouver hospital represents a large-sized hos-
pital that operates four CT scanners every weekday. It
faces a significant inpatient demand with an average of 126
| 5-minute appointment requests per day. There are three
outpatient priority classes with average daily demands of
9, 19, and 24 requests, respectively. The Kolmogorov-
Smirnov test for goodness of fit suggests that a Poisson
arrival distribution 1s appropriate. In the simulation, the
base capacity is again set equal to the average demand with

1519
Table 4.  Comparison of AOPs at a large hospital.
Priority  Overtime policy Overtime policy
Criteria class (100% HIP, d =100) (90% HIP, d = 100)
Percent HIP 0.18+0.01 0.09 £ 0.00
late LIP n/a 0
OP] 0 0
OP2 0 0
OP3 0 0
All 0.134+0.01 0.06 £0.00
Percent HIP 4.17+0.05 2.78 £0.06
overtime LIP n/a 0
OP1 0 0
OP2 0 0
OP3 0 0
All 2.94+0.03 1.77 +£0.04
Utilization 97.01 +£0.03 98.17+£0.03
percentage

24 available overtime slots (each machine with an hour and
a half of overtime availability). Table 4 presents the simula-
tion results for the AOP policy in the OT case both with and
without 10% of IP demand being low priority. Under both
scenarios, only small fractions of patients are booked late
or served through overtime with a significant improvement
in performance with the added flexibility in IP scheduling.

These four scenarios demonstrate that our approximate
optimal policy performs extremely well regardless of the
size of the hospital and across a variety of demand streams.

7. How Good Is the Approximation?

One of the most significant challenges facing users of ap-
proximate dynamic programming is the absence of accurate
bounds on the optimality gap between the cost incurred with
the AOP and the cost that would have been incurred under
the optimal policy. One available lower bound on the total
discounted cost is the optimal objective value for the ALP
(Adelman 2006). Because the form of the value function 1s
restricted to a certain class of functions, it is clear that the
optimal primal objective in the ALP will be a lower bound
on the optimal objective in the original LP. By strong dual-
ity, the optimal dual objective in the approximation will also
be a lower bound on the dual objective in the original LP.
This dual version of the objective function represents the
total discounted cost over the infinite horizon, and thus the
optimal objective value in the ALP gives a lower bound
on the true optimal total discounted cost. Although reason-
able in theory, this bound suffers from being highly depen-
dent on the choice of & and on the demand stream early
on in the simulation run. Thus, the total discounted cost
incurred during the simulation varies dramatically with «
and even varies significantly between simulation runs with
the same «. If « is set so that all slots during the initial
booking horizon are full, then the total discounted cost In
the simulation is within 18% of the lower bound (£+3.08%).
However, if « is chosen so that more capacity is avail-
able later in the booking horizon, then the optimality gap
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increases to 34% (£4.83%). The intuition is that the LP for-
mulation does not fully capture the time dynamics so that
it best mirrors the “true costs” when the costs are incurred
sooner rather than later.

As the approximation approaches the true value function,
the objective of the ALP also increases towards the objec-
tive of the true LP. Thus, the optimality gap represented
above is as much a result of an overly optimistic bound as
it is the result of suboptimality. The true optimality gap 1s
undoubtedly significantly lower than the bound given here.

Regardless of how well the approximation mirrors real-
ity, one can still compare the outcome of the derived pol-
icy with current practice. Current wait times for CT
scans within Canada (and elsewhere) are a major concern.
As mentioned in the introduction, the wait times at the
Vancouver hospital exceeded the targets for the majority
of patients despite the fact that capacity is approximately
equal to average demand. Thus, it is fair to claim that the
AOP does in fact outperform current practice. Although it
is possible that a different policy might maintain the same
wait-time targets at a lower cost, this does not negate the
significant improvement in outcome that the policy derived
in this paper achieves.

In an effort to gain some intuition into the form of the
true value function, we solved a number of very small in-
stances of the model exactly, using LP. The scenarios in-
volved two priority classes, booking horizons of at most
three days and a daily capacity of no more than four. Even
some of these small instances took two days to solve. It 1s
unreasonable to draw too many conclusions based on such
small examples, but several points seem relevant, though
not conclusive.

e A linear regression with the components of the state
as the independent variables and the value function as the
dependent variable resulted in a R® value of between 0.9
and 0.95. Thus, in a small problem, a linear approximation
appears to be a reasonable fit.

e When second-order terms including interactions are
added to the regression, the R* value increased to between
0.96 and 0.99, suggesting that the true form of the value
function may involve interactions between the components
of the state space.

e The linear value function approximation tended to
underestimate the value of a state when the system was
close to being empty and to overestimate the value of a
state when the system was close to capacity. This suggests
that the linear value function approximation overestimates
the cost of being in a congested state, thus potentially lead-
Ing to a more conservative policy.

There is one final piece of evidence to suggest that the
linear value function approximation is, in fact, a reasonable
one. It arises from pursuing what was originally thought to
be a defect in the model—namely, that a linear approxima-
tion does not take into account that on any given day, the
marginal cost of booking a scanning slot should increase
as the number of available slots decreases. Under a linear

approximation, reducing the number of available slots from
two to one “costs” the same as reducing the number of
available slots from ten to nine. A more reasonable con-
jecture of the value function might be nondecreasing and
convex in the number already booked on each day (x,). For
simplicity the value function approximation was kept linear
in the y state variable. Surprisingly, the added flexibility in
this model made no difference because the optimal value
function remained the same as in the linear model given
earlier—at least for the scenarios analyzed by the authors.
This would seem to support the conclusion that the lin-
ear model is an adequate representation of the true value
function of the MDP and that the “cost” associated with
having approximated the value function is not in fact 100
significant.

8. Extensions, Further Applications,
and Conclusions

Although we have endeavored to insure that the model 1s
as realistic as possible, there are inevitably enhancements
that could potentially lead to interesting results. First, what
would be the impact of introducing a no-show rate for
outpatient appointments? Our intuition is that for any sce-
nario involving inpatient demand, the booking policy would
remain unchanged, with the advantage being a reduction
in overtime. For an outpatient clinic, however, it is likely
that the introduction of no-shows would cause overbooking
to be beneficial. Second, one of the simphifying assump-
tions of the model is that all appointment slots are of equal
length. As mentioned early on in the paper, reality i1s very
different, but the impact of that difference does not appear
to be significant. Third, what would be the impact of allow-
ing service times to be random? In a small hospital setting
this may cause significant deviations in the results. In a
larger hospital, however, one would expect the results to
be fairly similar provided that the mean service time is In
fact equal to the length of the appointment slot. Finally,
true overtime costs are more likely to be piecewise linear,
reflecting the fact that CT technicians are paid time and a
half initially, and then double time should the amount of
overtime exceed a given limit. Given the reasonable nature
of the analytical bounds on overtime capacity, this is less
of an issue than it might have been if overtime had been
left unbounded. Finally, it would be of interest to explore
the impact of assuming a centralized booking system that
services a number of different hospitals. The obvious com-
plication is that the resource, as well as demand, is no
longer located in one place, and thus one must take into
account patient preferences and travel costs.

Although what we have presented here 1s adapted primar-
ily to a diagnostic imaging resource, any situation where
there are multiple priority classes with priority-specific
wait-time targets would be a potential application of the
model. The most obvious alternative health application 1s
surgical scheduling. The complication is that most surgi-
cal scheduling works on a block design that assigns blocks
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of time to each surgeon, who then books his/her patients
into those blocks. Thus, our model might be most useful
to the surgeons themselves as they seek to minimize exces-
sive wait times for their patients based on a fixed avail-
able capacity. Diversion might consist of sending patients
to other surgeons or using overtime. A second complication
1s that for surgical scheduling it 1s unreasonable to assume
a deterministic service time. A second potential applica-
tion is the scheduling of radiation treatment. The added
complication is that radiation treatment 1nvolves a series of
appointments rather than just one.

Through the use of approximate dynamic program-
ming, we have been able to solve a multipriority patient-
scheduling problem that was previously intractable. The
derived policy gives clear guidelines as to when to book
each priority class and when to resort to overtime (or other
alternate sources of capacity). Our analysis also gives the
resource manager a lower limit on the amount of overtime
required given a specific base capacity, priority-specific
wait-time targets, and demand stream. We have demon-
strated the robustness of this model to changes in the
parameter values and to variations in the demand mix. Al-
though the use of approximations leaves open the possibil-
ity that the resulting scheduling policy is suboptimal, we
have clearly demonstrated that the policies derived through
this research perform significantly better than current prac-
tice, and maintain wait times within the required targets
without recourse to excessive amounts of overtime. Finally,
our analysis demonstrates the significant impact of even a
small amount of flexibility in the scheduling of the highest-
priority class. This 1s contrary to current practice, which
tends to look for flexibility in the scheduling of the lowest-
priority class instead. Such a strategy provides only tem-
porary relief, with no long-term impact on the ability of a
resource manager to maintain wait-time targets.

We trust that this research will prove useful to health-
care policy makers as they seek to maintain reasonable wait
times for diagnostic services.

Appendix. Proof of the Form of
the Optimal Linear Value Function
Approximation with Overtime

Presented in the appendix is a proof of the form of the
optimal linear value function approximation for the sce-
nario where the diversion costs are constant (overtime). The
proof for the case where d(i) is decreasing in i follows the
same steps and is omitted. The wait-time targets, 7(i), for
each priority class are assumed to increase with i because
a high-priority patient is, by definition, a patient who must
be served sooner. For completeness, we restate the theorem
before giving the proof.

Restating the Theorem

THEOREM 1. Assume that the cost of overtime, d(i), is the
same for all priority classes, T (i) is strictly decreasing

in i and the booking costs are nondecreasing in n and
nonincreasing in i, with b(i,n) =0 for all n < T (i). If

b(i,n)+ 7y TWd > b(i, T(D)) + v "Vd (29)
for all n > T (i) and for all i,
| it N
'}’ —alt C]
I : A [H.‘ H] E X s 30
21*,}’ T(!)}na-l_,ﬂz:ﬂ? c:r[ ”]{l—’}" ( )
forall n>2T(1), and
[ TH=TC) N . C
(W e W, N il TR AT
. n=1 | —7y
&
B, (31)
Eey

where A; is the arrival rate for demand from priority
class i; C, is the base capacity, C, is the diverted capacity
(i.e., overtime), and vy is the discount rate, then the optimal
approximate value function amongst all linear approxima-
tions for the discounted MDP will have the following form:

d forallne{l,...,T(1)},

V.=2 yV._ forall ne{T(1)+1,...,N=1},
0 Tor n=1N,

W,=Vp, forallie{l,..., I},

/ T(H-=T(1)
b vC,
Wgzd(}f E A;—T(I)C )
i A=Ay b1 - Y

(32)

The Proof

The outline of the proof is as follows.

1. Prove the primal feasibility of the proposed solution.

2. Determine necessary and sufficient conditions under
which a dual solution, together with the proposed primal
solution, would satisfy complementary slackness.

3. Demonstrate that there exists a dual solution satisfy-
ing the necessary and sufficient conditions.

The existence of a dual solution that together with the
proposed primal solution satisfies complementary slackness
1s sufficient to prove the optimality.

Proving Primal Feasibility

We begin by proving the feasibility of the hypothesized
primal solution. Clearly, it gives nonnegative values for %
and W. With a little algebraic manipulation, the constraint
for the primal LP can be written as

(1-7)W,

N !
<3 :() B0, B)+ Vs — F )~ YW1y [PV — mx”)

n=I ]

=]

! /
+2_(d—f (D= YWz +1f D) +yWi = Wly) +7)_WiA,

=1 i=l

V(a,z)€As; 5 and (x,y)eS, (33)
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where A; = E|Y;]. To prove primal feasibility, it suffices to
demonstrate that the above definition for W, satisfies Equa-
tion (33) when the right-hand side (RHS) is at its most
negative. By Equation (29) with n = T(i) + 1, the coeffi-
cient for y; is positive for all i/ because W, is assumed to
equal y"?-T(d Thus, the state-action pair minimizing the
RHS of the above equation will always satisfy the condition
y, =Y a,, +z; for all i. Substituting the hypothesized

n=
solution into the primal constraint as well as replacing y;

with Y_,_, a;, + z; for all i yields

/
(I=y)W,< —Z’]’m]_“”dﬂn

=l

N
+ 3 (b(i,n) + (Yr-TO-IEH _ o TO=T(D)g) g,

n=2i=I
T(1)

.'
—dx, =Y (1=y)dx,+> (d—y" """ V4d)z,

n=2 =]

/
+ZTT{H—T[I]+IdAf (34)

=1

for all (a,z) € A;; and (x,y) € S. To determine which
state-action pair corresponds to the most negative RHS, one
can take each day and priority class separately.

For n = 1, the coefficient for x, in Equation (34) is
at least as negative as the coefficient for a;, with equality
only if i = 1. Thus, any state-action pair minimizing the
RHS will have x, +a,, =C,.

For n=2,...,T(1), b(i,n) =0 for all i. Thus, by in-
specting the coefficient for x,, any state-action pair mini-
mizing the RHS will have x, = C, if

(1—y) 2y 7T —y,
which is clearly true for all i with equality for i = 1. Thus,
any state-action pair that minimizes the RHS will have x, +
ay.=C; forall n<.T(1).

For n > T(1), the coefficient for a;, in Equation (34)
equals zero at n = 7(i) for each ¢ > 2. If n < T (i), the
coefficient is clearly positive for each priority class because
vy < |. On the other hand, if » > T'(i), then Equation (29)
insures that the coefficient is also positive. Thus, any state-
action pair minimizing the RHS of Equation (34) will have
a;, =0 for all n > T(1) such that n # T (i).

The z; coefficient in Equation (34) implies that any state-
action pair minimizing the RHS will have z; = 0 for all
i > 1, and that, again, we are indifferent in the case of i =1
(although z, is constrained by the overtime limit).

Therefore, Equation (34) is equivalent to

I

W[] ————-(—dC,—(T(l)—l)(l—'}f)dC,

WV

/
+ Z '}/T“}_T“H-ld)lf)

I A TH)-T()
3 Y vC,

which is true with equality for the assumed value of W,.
Therefore, if we can prove the existence of a feasible dual
solution, X(X,y,a,z), that together with the proposed
primal solution satisfies complementary slackness, then
the optimality of the proposed primal solution will be
demonstrated.

Conditions for a Dual Solution to Satisfy
Complementary Slackness

The proof thus far has demonstrated that the proposed pri-
mal solution will have tight constraints only for those state-
action pairs satisfying the following conditions:

e x,+a,,=C, forall n<T(1),

o z,=0foralli> 1,

e q,,=0 for all n> T(1),

e g, =0foralli>1,n#T(i), and

o YN a,+z,=y, forall i.

Thus, to prove that the proposed primal solution is opti-
mal, complementary slackness states that we must show
the existence of a dual feasible solution that is zero for all
state-action pairs that do not satisfy the above conditions
and for which all the dual constraints are tight (because all
primal variables are nonzero). To ease the proof, we impose
the further restriction that a dual variable is positive for a
given state-action pair only if x, and a;, equal either zero
or C, for all i and n.

Let (s,a) = (x,y,a,z) represent an arbitrary, feasible
state-action pair and let B = {(s,a) | X(s,a) > 0}. Recall
that the dual constraints have the form

(1—17) Z X(s,a)=1, (35)
(s,a)eB
!
Z X(S"' a)('x" i ‘y'xl!-’r] = ‘yzai.n+1) ; E.-:r[Xu]
(s.a)eB i=1
Y=l oadVe:  (86)
> X a)i—rA) =N Yi=l,.., L. (37)
(s,a)eB
X>0 VY(s,a)eS xA. (38)

Equation (37) has been simplified by recognizing that for
all X € B, Y\, a,, +z, =y, For n=N, Equation (36)
yields

E,[X
Y. X a)Y(m)=F,[X:] = ). X(s,a)= ([: N].
(s.a)eB {s.a)eﬂﬂ I

For n= N — 1, Equation (36) yields

> X(s,a)(xy_, —yxy) =E.[Xy_i]

(s,a)eB

= Z X(Saa)(xﬂ—l)_'}’ Z X(5=3)(xw)=Ea[X.-v——|]

(s,ajel (s.a)eB
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E
= > X(s,a)= “[é”"] ty ). X(s,a)
(s, n}Eg I (s. aJ%B
AN=]- Xy >

= = (E[ty-i ]+ YELIND.
I

Proceeding similarly, for arbitrary n > T(/) — 1, Equa-
tion (36) yields

E |x
Y. X(s:a)= ol ¥ Fy > X(s,a)
(s,a)eB ! (s,a)eB
.t'":l-ﬂ 1""n‘+l':"":.
N

Z m-= HE [x

For n = T(I) — 1, there is the added complication that
bookings may be made on day n+ 1. In this case, Equa-
tion (36) yields

Z X(s,a) (IT{:)-J —~YXT( Tﬂ:,ruj) = Ea[XT{I]—l]
(s,a)eB

= C, > X(s,a)—yC, Y X(s,a)

(s,a)eB (s,a)eB
X7(1)-1>0 x7(1y>0
—yC 2. X(s,a)=E,[Xr(y].
(s.a)eB
ay r(y=0
Because z; =0 and a,, =0 for all »n # T(/), Equation (37)
yields
1
G ) X@a)= ) }‘f(s,,a)yl,.._1 A
(s, 2)eB (s.a)eB i
a, r(n>0
1 A
= X(s,a):( ) o
(s.a)eB L= Y Cl
a;, 7(1y>0
Thus,
Y. X(s,a)
(s,a)eB
ITU}—I =)
l T’
E| A)+y ) X(s,a)
Cl —% (s.a)eB
IT{”.":'-G
l 2 m= '}f
= E_( Z T T(”+1Et![xm] I l Aa’)
I \m=T(1)-1 e
Proceeding similarly, for n > T(1),
). X(s,a)
{s:a}%ﬂ

] +
(zyﬁl "E ZT[T{I) s [T{f):w-n :) (39)

m=n l e ‘}’ i=l

Finally, for n < T (1), a,, may be nonzero. Therefore, Equa-
tion (36) yields

Z X(S!a)('xﬂ_ Y Xn+1 _‘}’al.n+l)=Ea[Xn]

(s.a)eB
= C; 2. X(sa)
(s,a)eB
Xy >0
=E[X,]+yC/| X X(s,a)+ ) X(s,a)
(s,a)eB (s,a)eB
Xpy1>0 ay p+1>0

However, not all priority 1 patients are necessarily booked
on the same day. This would make the system unsolvable
but for the fact that we know that x,,,+a, ,.,=C, for
all n€{0,...,T(1)—1} and for all (s,a) € B. Hence, Equa-
tion (35) yields

Y X(s,a)+ Y X(s,a)—

(s.a)eB (s.a)eB 'Y
ayns1>0 Xns1>0
Therefore,
[ Wl
Y. X(s;a)= +—-—-— for n<T(1). (40)
(s. n}%ﬂ l L=

Thus, Equations (39) and (40) give the required dual weight
for each day to satisfy complementary slackness and dual
feasibility. All weights are positive and none are greater
than the total available weight 1/(1—7) (from Equa-
tion (35)). To determine the required dual weight for sate-
action pairs with positive z,, recall that Equation (37) yields

1_ Z X(S a)yl
(s,a)eB
Therefore,
Z X(S,ﬂ)2|
(s.a)eB
)l T(1)
1_ _Z(ZX(Sa)ﬂlﬂ)
n=l \(s,a)eB
A ) ]
e B (- 1 xew)
1_? n=I| 1_‘}' (s.a)eB
X, =C]j
A 6 A | BOCITE 1%
- I_]()IC](Z[&["]"I"T])
l—y 11—y o C, 1—7y

= n-— Eu:[Xu] : ()= I )"f
C]( z v T(1) C +Z,},T{:} T{I)(l_‘y)c )
I I

n=T(1) i=2

A CiT(l) yC(T(1)—1)

=l—7 L=y 11—y
N % f ,},T(i}—T(l]
+> Yy TOFE (X, ]+ A;
n=l| =2 l G 'y
I T()=T(1) C 2
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Thus,
I ., T()-T() C
> X(sa)y =Y ——A-T(1)C,- =
(s.a)eB 1= i L= Y
N -4
+3 e p X ], (41)

which is greater than zero and less than C,/(1—vy) by
Equation (31) and therefore dual feasible. It is worth not-
ing that simply for dual feasibility, we would only need the
above to be greater than or equal to zero. However, if Equa-
tion (41) was identically zero, then we would have degen-
eracy and the proposed primal solution would no longer
be unique. In fact, the optimal objective function would be
zero, suggesting that an approximate value function identi-
cal to zero would be optimal.

The Existence of a Dual Solution Satisfying
Complementary Slackness

The above argument suggests a weighting scheme for a
dual feasible solution that, together with the proposed pri-
mal solution, satisfies complementary slackness. It remains
to prove that a dual solution satisfying the above weighting
scheme must exist. We can determine the state-action pairs
with positive dual weight starting on day 1 and working
up to day N. Because we imposed the condition that x,
and a;, are equal to either zero of C,, it follows that such
a dual solution exists if

[. The total dual weight available 1/(1—+y) given by
Equation (35) does not exceed the combined weight as-
signed to all states where x, or Y.I_ «a;, are greater than
zero for any n.

2. The total weight assigned to dual variables where
SN a,,+z; is positive is equal to the weight assigned to
dual variables where y; is positive.

This turns out to be straightforward because it is easy
to show that under the above weighting scheme and using
Equation (30),

n

Z X(s,a x,,+z Z X(s,a)a;, < L
X, >0 i=1a;,>0 _T

=5 ¥ X(s; a)+ZZX(sa ;

X, >0 i=lg;,>0 e

for all ne{l,...,N} and
N
> X(s.a)a,+ ) X(s,a)z,=)_ X(s.a)y,
n=la;,>0 2;=>0 ¥; =0

forall ie{l,...,/}. Thus, there exist admissible state-action
pairs that satisfy the above weighting scheme, proving the
existence of the required dual solution.
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