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Abstract Managing an efficient outpatient clinic can
often be complicated by significant no-show rates and
escalating appointment lead times. One method that
has been proposed for avoiding the wasted capacity
due to no-shows is called open or advanced access. The
essence of open access is “do today’s demand today”.
We develop a Markov Decision Process (MDP) model
that demonstrates that a short booking window does
significantly better than open access. We analyze a
number of scenarios that explore the trade-off between
patient-related measures (lead times) and physician- or
system-related measures (revenue, overtime and idle
time). Through simulation, we demonstrate that, over a
wide variety of potential scenarios and clinics, the MDP
policy does as well or better than open access in terms
of minimizing costs (or maximizing profits) as well as
providing more consistent throughput.

Keywords Clinic scheduling · Open acess ·
Markov decision processes · Dynamic programming ·
Simulation

1 An introduction to outpatient scheduling

In recent years, a form of scheduling called advanced
access or open access (OA) has been touted as the
preferred booking policy for outpatient clinics. The
mantra is “do today’s demand today”. The implicit
assumption is that, due to a combination of the cost
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of no shows and the value the clinic places on same-
day access, the benefit associated with being able to
smooth demand over a period of time is insufficient to
warrant delaying appointments. This begs the question
as to how prevalent no-shows need to be and/or how
strongly the clinic needs to value same-day access in or-
der to outweigh the benefit of being able to smooth out
demand. It is such trade-offs that this research seeks to
explore by developing an MDP model to determine the
optimal booking policy for given wait-time-dependent
no-show rates and by exploring potential cost structures
for various clinics.

The detriments of a strict OA policy have begun to
appear in the literature as some papers have suggested
that a short booking window is more appropriate and
that there are certain conditions that need to be sat-
isfied in order for OA to succeed. This work falls in line
with that literature and proposes a different outpatient
scheduling policy that does in fact use a short booking
window combined with overbooking to mitigate the
impact of no-shows.

We assume that we are dealing with a clinic that has
a fixed capacity to see C clients per day but with ad-
ditional overtime available if necessary. Clients call for
appointments before the start of a service period and
can either be booked into that period or else booked
into the next available appointment slot in a future
service period. Appointments are subject to a no-show
probability that increases the further in advance the
appointment is booked. Decisions regarding how many
requests to serve today and how many to book in
advance have to be made prior to knowing if any of the
previously booked appointments will fail to show up.

The rest of the paper proceeds as follows. In
Section 2, a review of the literature on open access
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and clinic scheduling is presented and how our ap-
proach differs from what has been done previously is
demonstrated. In Section 3, the MDP model for the
clinic scheduling problem is described as well as some
of the assumptions inherent in the model and two
complications that seek to overcome some of those as-
sumptions. In Section 4, the results of testing the MDP
policy against OA in a simulation are presented and in
Section 5, the form of the MDP policy is described.
Finally, Section 6 presents the conclusions from this
research.

2 Literature review

Murray and Tantau [10] first proposed the idea of
OA as a solution to the high levels of no-shows often
present in outpatient clinics. They provide a case study
of a successful implementation of open access in the
US. Kopach et al. [6] provide a simulation study to
determine the impact of various clinic characteristics on
the successful implementation of OA. Their simulation
allows for a multi-doctor clinic and patient specific no-
show probabilities. They allow for limited overbooking
in some of the scenarios analyzed in the simulation.
Robinson and Chen [12] demonstrate that OA most
often outperforms a traditional booking system (with
a fixed number of patients per day) but is itself out-
performed by a “same-or-next-day” scheduling policy
thus demonstrating that there is some advantage to
flexibility in scheduling. They use a weighted sum of
physician idle time, direct patient waiting time and
overtime as the basis for their performance measure.

More generally, Cayirli and Veral [2] as well as
Gupta and Denton [4] provide overviews of ap-
pointment scheduling research. Kim and Giachetti
[5] present a stochastic model that seeks to address
the question of how many patients to book in ad-
vance given a known distribution for walk-in demand
and no-shows. The no-show probability is dependent
solely on the advance booking policy (ABP). LaGanga
and Lawrence [7] also demonstrate the advantage of
overbooking in a stochastic model that computes the
expected benefit from overbooking. Neither paper
however provides a dynamic scheduling policy where
decisions can be dependent on the state of the booking
slate. More recently, Muthuraman and Lawley [11]
model a clinic with a fixed number of “slots” and where
unfinished demand “overflows” into the next slot. They
provide a myopic scheduling policy that maximizes
revenue but that does not take into account future
demand. Patients are added to the booking slate until
the expected profit ceases to increase at which point

demand is rejected. Zeng et al. [13] build on the model
of Muthuraman and Lawley by allowing the no-show
probabilities to vary between patients. They propose
two sequential scheduling algorithms—one that is my-
opic in a similar fashion to Muthuraman and another
that attempts to include future demand in the decision
process through a forecasting model.

Finally, Liu et al. [9] provide a dynamic program-
ming approach that takes into account future demand
and allows for state dependent cancelation and no-
show rates. Their model tracks the number of booked
appointments that are i days out and that were booked
j days in advance. This creates an intractable MDP due
to the size of the state space. They therefore resort to
a one-step policy iteration to improve the policy and
demonstrate (in line with the work of Robinson and
Chen) that a two day booking window outperforms
same day booking and that through their one-step pol-
icy iteration they can improve on any initial policy.

This research adds to the above literature by provid-
ing a dynamic program that can be solved to optimal-
ity, allows for wait time dependent no-show rates and
provides clear evidence that a short booking window
with overbooking can provide greater benefit to a clinic
than a strict adherence to OA. The cost structure in
the model is sufficiently flexible to provide a dynamic
scheduling policy for a variety of clinics and the sim-
ulation results demonstrate the distinct advantage of
the scheduling policy derived from the MDP for all the
clinic types tested.

3 MDP model for clinic scheduling

Scheduling decisions are assumed to be made before
each service period but after today’s demand has ar-
rived. Ideally, the probability of a given client keep-
ing his/her appointment would depend on how far in
advance the client has been scheduled. However, the
MDP model would quickly become intractable if the
actual waiting time of each client was incorporated into
the state space. Instead, the assumption that clients who
are booked in advance are given the first available slot
on a first-come-first-served basis allows the size of the
queue to act as a proxy for wait time.

The “advanced booking policy” (ABP) is defined as
the number of clients who can be booked in advance
into each future day. The schedule is not constrained
to book only C clients per day as the potential for
no-shows may in fact make overbooking desirable and
the possibility of same day bookings may make under-
booking desirable.
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The state is represented by a vector, s = (w, x, y),
with w representing the current ABP, x representing
the number of previously booked appointments and
y representing new demand. The ABP is restricted to
the set {1, ..., M} with M > C in order to allow for
limited overbooking. Thus, M represents the maximum
number of patients who can be booked in advance
into each future day. The total number of advanced
bookings are also restricted so that x ∈ {0, ..., N} for
some finite N > 0. Thus, N is the maximum size of
the queue. x ∧ y and x ∨ y are used to represent the
minimum and maximum of x and y respectively.

Each decision epoch, two decisions are required of
the manager. S/he must decide whether to change the
current ABP as well as how much of the new demand
to service today. Let a = (a, b) represent the combined
action where a represents the new ABP and b repre-
sents how much new demand to serve today. In this
version of the model, any change in the ABP takes
place by the next day.

Actions are constrained in four ways. First, bookings
cannot exceed demand so b ≤ y. Second, the number of
patients in the advance booking slate cannot exceed the
imposed limit so b ≥ [x − x ∧ w + y − N]+ (number of
today’s demand treated today must be at least equal
to the current number of bookings − minus today’s
bookings + demand − limit on the number of advanced
bookings). Thirdly, the new ABP is no more than 1
patient per day different from the previous ABP and
does not deviate outside the imposed limits so 1 ∨ (w −
1) ≤ a ≤ (w + 1) ∧ M. The restriction to only a one
patient per day change in the ABP is simply to limit the
problem to a reasonable size and due to the doubtful
benefit of making radical changes. Finally, all actions
are positive and integer so (a, b) ∈ Z + × Z +.

The transition to the next state can be described as:

s = (w, x, y) → s′ = (a, x − x ∧ w + y − b , D) (1)

where D is a random variable representing new de-
mand. The new booking slate consists of the previous
booking slate minus today’s slate (x ∧ w) plus any of
yesterday’s demand that was not served immediately
(y − b).

There are a number of potential rewards/costs as-
sociated with booking patients to a clinic. There may
be some revenue associated with each patient serviced,
f R, a cost to servicing a patient through overtime, f OT ,
a cost associated with idle time, f IT , and a cost asso-
ciated with patient appointment lead times, f LT—that
is the number of days between the request for service
and the date of service. Service times are assumed to
be deterministic so that overtime and idle time costs

are simply a function of the number of patients who
show up to their appointment and capacity. Finally, in
order to avoid changes in the ABP that don’t result
in a major benefit, a cost for switching the ABP, f S,
can be imposed. The expected reward function can be
written as:

r(s, a) = f R(ps(w, x)(w ∧ x) + psdb)

− f OT
∑

(i, j)∈W×B

(i+ j−C)+ Pr(AB= i)Pr(SD= j)

− f IT
∑

(i, j)∈W×B

(C−i− j)+ Pr(AB= i)Pr(SD= j)

− f LT x + f S(w − a)+ (2)

where ps(w, x) is the probability that an advance book-
ing shows up (henceforth called the show probability)
given there are x clients in the queue and w is the
current ABP, psd is the show probability for a same-day
booking, W is the set of possible values for w ∧ x and
B is the set of possible values for b . AB is a random
variable representing the number of clients booked in
advance for an appointment today who show for their
appointment and SD is a random variable representing
the number of clients given a same day appointment for
today who show for their appointment. Obviously, it is
possible to “shut off” any element of the reward func-
tion to better reflect the objectives of the actual clinic.
The costs/rewards can be viewed as a trade-off between
physician- or system-related measures (revenue, over-
time and idle time) and patient-related measures (lead
time).

The choice for the probability of a client arriving for
his/her appointment is clearly crucial. Kopach et al. [6]
provide a logistic regression (with an R2 = 0.8071) for
an outpatient clinic that includes age, session (whether
the client is booked into the morning or afternoon),
weather and insurance type as predictors of the show
probability. They recognize that appointment lead time
is also crucial but had no data to substantiate the actual
impact. They therefore adjust the show probability by
an exponential function based on lead times deter-
mined by “expert” opinion. Gallucci et al. [3] demon-
strate, for a community mental health center, that ap-
pointment lead time does in fact have a significant
impact, with that impact stabilizing for a lead time
greater than 7 days. Of 5901 patients in the data set,
31% failed to show up for their appointment. The show
probability for same-day appointments was 88% and
dropped to 77% for next day appointments. Appoint-
ments booked 7 days out had a show probability of 58%
while a 13 day delay only dropped the show probability
to 56%. Finally, Lee et al. [8] use a logistic regression
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model to demonstrate that age, race, appointment lead
time, previously failed appointments, provision of a cell
phone number and distance from the hospital were
all significant factors in predicting show probabilities.
However, their appointment lead time analysis only
compares lead times less than 7 days to lead times
greater than 21 days.

While it would be ideal to incorporate all the factors
mentioned above, such detail would make the model
intractable. Thus, this research focuses only on ap-
pointment lead time as the factor that is most clearly
impacted by the scheduling policy. To that end, the
following show probability is used:

ps(w, x) = max
(

1 − β1 + β2 ∗ log(LT + 1)

100
, β3

)
(3)

with LT representing appointment lead time. The log
function easily models the Gallucci results (with β1 =
12, β2 = 36.54, β3 ∼= .5) that impose a diminishing im-
pact of an extra day’s wait the further out a client
is booked. β3 represents a lower bound on the show
probability of any client. The addition of one to LT
inside the log function insures that the show probability
for a same day booking (LT = 0) is psd = 1 − β1/100.
For advance bookings,

LT = max(1, 
x/w�) (4)

where 
x/w� is the largest integer smaller than x/w.
The maximum reflects the fact that even if the num-
ber of bookings is less than the ABP, 
x/w� < 1, any
client booked in advance still waits a day. Equation 4
allows the ABP to impact on the relationship between
appointment lead times and queue size (if you allow
more clients to be booked per day then the same x
reflects less of a wait) and therefore better reflects an
equal show probability for patients booked an equal
number of days out.

The above description provides the five elements
(decision epochs, state space, action space, costs and
transition probabilities) for a Markov Decision Process
(MDP) formulation. An infinite horizon setting was
chosen as clinics do not have a closing date and thus any
end to the scheduling horizon is necessarily arbitrary.
This forces the model to ignore any “day-of-the-week”
effect but avoids any arbitrary terminal rewards.

The discounted version of the MDP is used to reflect
the fact that upfront costs are always more expensive
than future costs. However, a discount factor of γ =
0.99 is used so as not to unduly bias the model against
the future. The standard optimality equations for a

discounted infinite horizon MDP of this initial model
can therefore be written as:

v(s) = max
a∈A(s)

{
r(s, a) + γ

∑

k∈D

pd(k)

× v (a, x − x ∧ w + y − b , k)

}
(5)

where pd(k) is the probability that D = k.

3.1 Assumptions to the model

As with any modeling exercise, there are a number of
assumptions that help keep the model tractable. First,
client service times are assumed to be deterministic
and we do not allow for advance notice of cancela-
tions. Second, as mentioned in Section 3, the model
assumes that all demand for a given day has arrived
before any scheduling decision needs to be made. In
reality scheduling decisions have to be made as each
demand request arrives. However, batch arrivals allows
decisions to be made in discrete time and the resulting
policy, as will be demonstrated in Section 5, is easily
translatable into the more realistic setting where the
scheduling decision occurs at the time of each demand
request. Third, the utilization of the size of the queue as
a proxy for wait time when calculating the probability
that a client shows up for an appointment means that
the no-show rate of a client will depend on the size
of the queue at the time of service when in reality it
depends on the size of the queue at the time of booking.
While this may mean that an individual’s no-show rate
may not be accurate, it will still penalize a system that
books well in advance to the same degree as a more
realistic (but intractable) model. It is also an issue only
if the length of the queue varies dramatically whereas
the policy derived from the MDP model shows no such
variation. Fourth, for the sake of simplicity, the issue of
patient availability is ignored as each client is assumed
to take the offered slot. To do otherwise would require
the model to track actual appointment lead times which
would again lead to an intractable model. Finally, in
the model described in Section 3, changes in the ABP
occur before the next decision epoch. This may mean
that some appointments need to be postponed (if the
ABP is lowered) or that some clients may need to
have their appointment day advanced (if the ABP is
increased). A more complex model that includes a lag
time in the enactment of any change in the ABP is
developed in Section 3.3 in order to avoid this problem.
However, a small cost for any change to the ABP
forestalls this issue as it tends to result in the optimal
policy settling on a single ABP. Such a cost is imposed
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in the simulation results presented in Section 4 in order
to insure a simpler policy that is easily implementable.
In all simulation runs in which the model was run with
and without a cost for changing the ABP the difference
in the objective between the more complex policy and
the simpler one was not statistically significant. The
next two subsections provide two complications to the
model that allow for more realism.

3.2 Complication 1: two stream demand

To add an additional element of realism, the model can
easily be adapted to allow for a stochastic stream of
clients who must be booked in advance. The transitions
would then become:

s = (w, x, y) → s′ = (a, x − x ∧ w + y − b + A, D)

(6)

where A is a random variable representing the demand
requiring advanced booking. The optimality equations
are now:

v(s) = max
a∈A(s)

{
r(s, a) + γ

∑

i∈D, j∈A

pd(i)pa( j)

× v (a, x − x ∧ w + y − b + j, i)
}

∀s ∈ S

(7)

where A is the set of possible advanced booking re-
quests and pa( j) is the probability of getting j advanced
booking requests in a day. Since advanced booking
requests (for a clinic running OA) generally arise as

follow-up visits from today’s appointments, the number
of such visits is assumed to be unknown until after
today’s booking decisions are made.

An additional issue that this complication to the
model raises is that it is now impossible to insure that
the booking slate does not exceed N clients simply by
restricting the action set. To avoid this issue, a client’s
request for an appointment is rejected at a high cost
should accepting it cause the booking slate to exceed
N. Making this cost sufficiently high insures that such
extreme measures are never required.

3.3 Complication 2: lag time in ABP changes

As mentioned earlier, it is somewhat unrealistic to
expect a change in the ABP to be implemented imme-
diately. However, the model can be adjusted to impose
a lag time on any change in the ABP. Let the new
state, s = (w, x, y, z), where w, x and y are as before
and z represents the lag time remaining until the next
triggered ABP change. The lag can be set to 
x/w� ∨ 1
to insure that the lag is equal to the number of days
that are already fully booked and thus no previously
booked appointments need to be canceled and no new
bookings jump the queue. If z < 0 then the decision is
to reduce the ABP by one and if z > 0 then the decision
is to increase the ABP by one. More drastic changes are
not considered.

The same actions are available to the manager with
the same restrictions. The evolution of the system de-
pends on the current lag time and can be described by
the following set of transitions:

s = (w, x, y, z) →

s′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(w, x − x ∧ w + y − b , D, l + 1), If l < −1;
(w, x − x ∧ w + y − b , D, l − 1), If l > 1;
(a, x − x ∧ w + y − b , D, 0), If l = −1, 
x/w� ≤ 1 or l = 1;
(w, x − x ∧ w + y − b , D, −
x/w� − 1), If l = 0, 
x/w� > 1 and a < w;
(w, x − x ∧ w + y − b , D, 
x/w� − 1), If l = 0, 
x/w� > 1 and a > w;
(w, x − x ∧ w + y − b , D, 0), If l = 0 and a = w.

(8)

Here, D is again a random variable representing new
demand. Notice that once a decision to change the
ABP is made, no new change can be made until the
day when that decision is implemented. If tomorrow’s
slate is not yet full (
x/w� ≤ 1) then the ABP change is
implemented by tomorrow as in the original model.

Finally, the optimality equations are

v(s) = max
a∈A(s)

{
r(s, a) + γ

∑

k∈D

pd(k)v
(
s′)

}
(9)

where D represents the set of all possible demand, pd

is the probability distribution for new demand and s′

is determined by the transitions given in Eq. 8 with
D = k.

4 Simulation results

In this section, the simulation results are presented
that compare the MDP policy to OA in a variety of
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scenarios that are chosen to explore the trade-off be-
tween the system-related costs/rewards (revenue, over-
time and idle time) and the patient-related ones (lead
time). We consider three clinic types for the system-
related costs/rewards. The first clinic ignores idle time
and sets revenue to twice the cost of overtime: f R =
20, f OT = 10 and f IT = 0. The second clinic adds an
additional cost for idle time: f R = 20, f OT = 10 and
f IT = 5. The third clinic does not receive remunera-
tion for each patient seen but seeks to maximize the
utilization of the available capacity to meet all demand:
f R = 0, f OT = 10 and f IT = 5. In all cases, the cost
of changing the ABP is set equal to the cost of one
overtime slot. The relative values of the cost parame-
ters is somewhat arbitrary. We have followed common
practice of valuing idle time (when it is considered
important) at half the cost of overtime and have chosen
to set revenue at twice the value of overtime. The
rationale for these choices is to represent both clinics
that are privately run or where the physician is paid on
a fee-for-service basis (so that revenue is important) as
well as clinics that are publicly funded and therefore
where revenue is not a factor.

For each of these clinics, lead time costs are set at 0,
1 and 5 leading to a total of 9 clinic types differentiated
by the relative weight they place on each cost/reward. If
the cost of a day’s lead time is set equal to the overtime
cost then the optimal policy would clearly be OA. Thus,
lead time costs of 1 and 5 seem reasonable options
for demonstrating the impact of increasing the value
of providing same-day service. For each clinic type, we
consider 6 scenarios. The base case for each clinic as-
sumes a Poisson arrival rate and sets average demand,
λ, equal to capacity, C = 10. Such a small clinic size
is chosen in order to restrict the amount of computa-
tion time for running numerous scenarios. Larger clinic
sizes can obviously be solved. The Gallucci show-rate
described in Section 3 is used to determine show rates.
Admittedly, a mental health clinic may not be the most
standard clinic upon which to base the no-show rates.
However, the intent is to demonstrate the benefit of a

short booking window in spite of the presence of no-
shows thus using a show-rate that is perhaps overly pes-
simistic is reasonable. Any clinic seeking to implement
the MDP policy would have to determine their own
show-rate first.

In addition to the base case, five other scenarios
are run for each clinic type. The average demand rate
is varied above and below the capacity, a stream of
demand is introduced that must be booked in advance
(arriving with rate μ), the show rate is given a steeper
rate of decline and finally same day bookings are
given a show probability of one. The actual parameter
values for each of these scenarios are summarized in
Table 1. No results are provided for the lag time version
of the model as the cost (equal to one overtime slot)
associated with switching the ABP results in a policy
that does not vary the ABP thus making the lag time
irrelevant. Running the model with no switching cost
leads to a much more complicated policy but provides
a statistically insignificant improvement over the policy
with a fixed ABP.

For each scenario, 50 replications, each 5000 days
in length, are run both for the MDP policy and OA.
The two policies are compared on the basis of through-
put, overtime, idle time, appointment lead times and
profit/cost. Statistics are collected after the first 500
days.

One technical challenge was the calculation of the
expected number of clients scheduled today who show
for their appointment when the show rate is dependent
on the actual lead time (as in the simulation). The
challenge is that each client may have been booked a
different number of days in advance and thus may have
different show probabilities. This problem is avoided
in the MDP model by using queue size as a proxy for
wait times but in the simulation actual wait times for
each client are used. Each day, the probability distri-
bution of the number of clients who show up for their
appointment based on the scheduled clients for that day
needs to be calculated. This is accomplished based on
the algorithm outlined in [1]. Once that probability is

Table 1 Scenarios analyzed Base case (λ = C) λ = 10, μ = 0, β1 = 12, β2 = 36.54, β3 = 50
Reduced demand (λ = C − 2) λ = 8, μ = 0, β1 = 12, β2 = 36.54, β3 = 50
Increased demand (λ = C + 2) λ = 12, μ = 0, β1 = 12, β2 = 36.54, β3 = 50
Advanced bookings λ = 7, μ = 3, β1 = 12, β2 = 36.54, β3 = 50
Show rate with steep decline λ = 10, μ = 0,

β1 = 12 (same day rate unchanged),
β2 = 80 (steeper decline),
β3 = 20 (levels out at lower rate)

Show rate with same day = 100% Same as base case except show probability is 1
for same day appointments
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determined, it is an easy step to calculate the expected
rewards/costs each day and thus to obtain the optimal
action based on the argmax of Eq. 5.

Table 2 provides a comparison of OA and the MDP
policy for each of the scenarios for the clinics with
system-related parameters equal to, f R = 20, f OT =
10, f IT = 0 and appointment lead time costs of 0,1
and 5. Throughput is given as a percentage of demand,
while overtime and idle time are given as a percentage
of capacity. The results of the simulation demonstrate
that the two policies are essentially equivalent in terms
of average daily profit with the MDP policy slightly
outperforming OA in most scenarios. It is not surpris-
ing that OA performs relatively well for a clinic where
revenue is present since any no-show is detrimental in
that it reduces revenue even if overtime is required.
Thus, a policy that minimizes the number of no-shows
(which is the aim of OA) will clearly have an advantage.
The surprise perhaps is that one can do as well by
reducing overtime and idle time through a more sophis-
ticated scheduling policy even if that policy implies that
there will be less throughput. The crucial additional

advantage of the MDP policy is that the day-to-day
workload is significantly less variable (see Fig. 1) and
the peak load is significantly reduced (from 20 to 15 in
the base case with zero lead time costs for instance).

Table 3 provides the comparison of OA and the
MDP policy for each of the scenarios for the clinics with
system-related parameters equal to f R = 20, F OT =
10, f IT = 5 and appointment lead time costs of 0, 1 and
5. These clinics demonstrate relatively similar results to
those clinics that ignored idle time as revenue is still
the primary driver. Thus the two policies are essen-
tially equivalent in terms of average daily profit with
the MDP policy outperforming OA by slightly higher
margins than for the previous clinics. Again, there is
a significant reduction in the peak workload and a
smoothing of the variation in daily throughput (see
Fig. 2).

Finally, Table 4 provides the comparison of OA
and the MDP policy for each of the scenarios for
the clinics with system-related parameters equal to
f R = 0, F OT = 10, f IT = 5 and appointment lead time
costs of 0, 1 and 5. For such clinics, the MDP policy

Table 2 Simulation results for a clinic with f R = 20, f OT = 10, f IT = 0

Scenario Policy Lead time Average daily Max lead Profit Increase in profit

cost TH OT IT time (days) for MDP

Increased OA 88.0 15.7 10.2 0 195.40
demand MDP 0 86.7 11.4 7.4 1 196.69 0.7%*

1 87.5 13.7 8.7 1 195.96 0.1%*
5 88.0 15.7 10.2 0 195.40 0.0%

Show rate OA 100.0 12.5 12.5 0 187.50
with same MDP 0 98.2 8.3 10.1 1 188.06 0.3%*
day = 100% 1 99.1 10.1 11.1 1 187.58 0.0%

5 100.0 12.5 12.5 0 187.5 0.0%
Base case OA 88.0 6.9 18.9 0 169.08

MDP 0 86.8 3.1 16.3 1 170.51 0.8%*
1 88.0 6.9 18.9 0 169.08 0.0%
5 88.0 6.9 18.9 0 169.08 0.0%

Show rate OA 88.0 6.9 18.9 0 169.08
with steep MDP 0 87.2 4.9 17.8 1 169.39 0.2%*
decline 1 87.8 6.4 18.6 1 169.11 0.0%

5 88.0 6.9 18.9 0 169.08 0.0%
Advanced OA 84.6 5.6 21.0 1 160.66

bookings MDP 0 83.7 2.6 18.9 2 164.83 2.6%*
1 84.0 3.4 19.4 2 161.16 0.3%*
5 84.6 5.6 21.0 1 160.66 0.0%

Decreased OA 88.0 2.1 31.7 0 138.73
demand MDP 0 87.5 0.5 30.5 1 139.45 0.5%*

1 87.6 0.7 30.7 1 139.12 0.3%*
5 88.0 1.9 31.5 1 138.79 0.0%

Throughput (TH) is given as a percentage of demand and overtime (OT) and idle time (IT) as a percentage of regular hour capacity
Starred lines represent scenarios where the MDP policy improved significantly (α = 0.05) upon the OA policy in terms of cost based
on a matched pairs t-test
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Fig. 1 Daily throughput
for a clinic with f R = 20,

f OT = 10, f IT = 0, f LT = 0
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Table 3 Simulation results for a clinic with f R = 20, f OT = 10, f IT = 5

Scenario Policy Lead time Average daily Max lead Profit Increase in profit

cost TH OT IT time (days) for MDP

Increased OA 88.0 15.7 10.2 0 190.33
demand MDP 0 86.2 10.3 6.8 1 193.21 1.5%*

1 87.1 12.3 7.8 1 191.70 0.7%*
5 88.0 15.7 10.2 0 190.33 0.0%

Show rate OA 100.0 12.5 12.5 0 181.25
with same MDP 0 97.0 6.0 9.0 1 183.44 1.2%*
day = 100% 1 98.1 8.1 10.0 1 182.38 0.6%*

5 100.0 12.5 12.5 0 181.25 0.0%
Base case OA 88.0 6.9 18.9 0 159.63

MDP 0 86.6 2.6 16.0 2 162.49 1.8%*
1 86.9 3.5 16.5 1 161.29 1.0%*
5 87.8 6.2 18.3 1 159.61 0.0%

Show rate OA 88.0 6.9 18.9 0 159.63
with steep MDP 0 86.6 4.0 17.4 1 160.46 0.5%*
decline 1 87.0 4.7 17.7 1 159.63 0.3%*

5 88.0 6.9 18.9 0 159.63 0.0%
Advanced OA 84.6 5.6 21.0 0 153.03

bookings MDP 0 83.3 1.9 18.6 3 155.45 1.6%*
1 83.8 2.8 19.0 2 154.69 1.1%*
5 84.4 4.8 20.4 1 153.05 0.0%

Decreased OA 88.0 2.1 31.7 0 122.90
demand MDP 0 87.5 0.5 30.5 1 124.21 1.1%*

1 87.6 0.6 30.5 1 123.95 0.9%*
5 87.8 1.3 31.0 1 123.16 0.2%*

Throughput (TH) is given as a percentage of demand and overtime (OT) and idle time (IT) as a percentage of regular hour capacity
Starred lines represent scenarios where the MDP policy improved significantly (α = 0.05) upon the OA policy in terms of cost based
on a matched pairs t-test
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Fig. 2 Daily throughput
for a clinic with f R = 20,

f OT = 10, f IT = 5, f LT = 0
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Table 4 Simulation results for a clinic with f R = 0, f OT = 10, f IT = 5

Scenario Lead time Policy Average daily Max lead Cost Decrease in cost

cost TH OT IT time (days) for MDP

Show rate OA 100.0 12.5 12.5 0 18.75
with same MDP 0 91.6 1.0 9.4 3 5.67 69.8%*
day = 100% 1 93.4 1.8 8.4 2 8.92 52.4%

5 97.1 6.1 9.0 1 16.93 9.7%*
Increased OA 88.0 15.7 10.1 0 20.81

demand MDP 0 78.0 2.9 9.2 4 7.50 64.0%*
1 83.9 6.9 6.2 2 14.29 31.3%*
5 87.8 14.7 9.4 2 20.67 0.7%*

Base case OA 88.0 6.9 18.9 0 16.34
MDP 0 84.1 0.7 16.5 3 8.92 45.4%*

1 85.9 1.7 15.8 2 11.45 29.9%*
5 87.4 4.5 17.1 1 15.64 4.2%*

Show rate OA 88.0 6.9 18.9 0 16.34
with steep MDP 0 82.7 0.8 18.1 2 9.81 40.0%*
decline 1 84.3 1.5 17.2 2 11.60 29.0%*

5 86.6 4.0 17.4 1 15.51 5.1%*
Advanced OA 84.6 5.6 21.0 0 16.16

bookings MDP 0 81.5 0.6 19.1 3 10.11 37.4%*
1 82.9 1.4 18.5 2 12.03 25.5%*
5 84.2 3.7 19.6 1 13.89 14.0%*

Decreased OA 88.0 2.1 31.7 0 17.89
demand MDP 0 86.9 0.0 30.5 2 15.28 14.6%*

1 87.2 0.2 30.4 1 15.93 11.0%*
5 87.6 0.8 30.7 1 17.32 3.2%*

Throughput (TH) is given as a percentage of demand and overtime (OT) and idle time (IT) as a percentage of regular hour capacity
Starred lines represent scenarios where the MDP policy improved significantly (α = 0.05) upon the OA policy in terms of cost based
on a matched pairs t-test



100 J. Patrick

Fig. 3 Daily throughput
for a clinic with f R = 0,

f OT = 10, f IT = 5, f LT = 0
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significantly reduces average daily cost compared to
OA in all instances. Figure 3 again demonstrates the
significant reduction in variation in daily throughput
and in the peak workload achieved by the MDP policy
as opposed to OA.

The longest appointment lead times in any of the
scenarios examined was four days demonstrating that
while the MDP does increase patient lead times it does
not do so excessively. It is also worth noting that, for the
three clinic types differentiated by the system-related
parameter values, the scenarios where the MDP policy
performed the best were the scenario with same day
show probability equal to 100% (a scenario that one
might have thought would benefit OA the most) and
the scenario where demand exceeded capacity. This
might seem counter-intuitive as one would expect a
scenario with higher demand to lead to higher levels
of overtime. However, the presence of a significant no-
show rate means that the ef fective demand can, to some
extent, be controlled by the scheduling policy that is
implemented as a larger booking window means higher
no-show rates. Finally, for all clinic types, the MDP
policy approaches an OA policy the more capacity
exceeds demand or, not surprisingly, as the lead time
cost increases.

In the simulation and in the MDP, a linear function
for overtime costs was used. A more realistic piecewise
linear function that incorporates increasing overtime
costs with a larger overtime load would increase the

benefit of the MDP policy over OA. Additionally, the
maximum number of arrivals in a day was restricted
to twice the average demand in ordered to keep the
state space relatively small. If higher daily demand
levels were permitted an even greater improvement in
performance would have been achieved by the MDP
policy compared to OA.

5 The form of the MDP policy

The MDP policy without a cost associated with chang-
ing the ABP is not easily described for any of the clinics
as it depends on a number of factors—the current
ABP, queue size and demand as well as today’s slate
of patients and today’s expected throughput. However,
once a cost is imposed for changing the ABP, the policy
becomes quite simple and depends on two factors—
the size of the queue (those already booked plus those
waiting to be booked) and today’s current slate.

For all of the clinics and scenarios analyzed, the
MDP policy is defined by a series of thresholds. The
policy will act initially like OA booking any new re-
quest into today’s slate. However, once today’s slate
reaches a certain threshold (the value being depen-
dent on the scenario and particularly on the lead time
cost), it will begin to defer any further requests to the
next available appointment slot. The policy will revert
back to booking a new request into today’s slate if
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Fig. 4 Example of the form
of the optimal policy from
the MDP DEMAND 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0 0 0

7 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 0 1 0 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0

11 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 1 0

13 0 0 0 0 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 1 0

15 0 0 0 0 0 0 0 0 0 0 1 0

16 0 0 0 0 0 0 0 0 0 0 1 0

17 0 0 0 0 0 0 0 0 0 0 1 0

18 0 0 0 0 0 0 0 0 0 0 1 0

19 0 0 0 0 0 0 0 0 0 0 0 1

20 0 0 0 0 0 0 0 0 0 0 0 1

Number of Clients Booked For Today

the queue size reaches its own threshold. Depending
on the scenario, the policy may then simply revert to
OA and book any additional demand into today or it
may book only one additional client today and then
defer again until another threshold triggers a second
overbook. If the lead time cost is set to zero then the
first threshold that triggers the initial decision to begin
booking requests into future days is equal to capacity.
As the lead time cost is increased, that first threshold is
increased as well.

Figure 4 gives a demonstration of the policy for the
base case for a clinic with cost parameters equal to
f R = 0, f OT = 10, f IT = 5, f LT = 0 and for a day with
no advance bookings at the outset. The MDP policy
acts like OA until capacity is reached at which point
it begins to delay demand to the next day. However,
if the number of requests exceeds 18 then it books
an additional client into today’s schedule before once
again delaying any further demand to the next available
appointment slot. If there are advance bookings already
on the slate then the policy looks very similar to that
in Fig. 4 but with the threshold shifted down by the
number already in the queue. If the lead time cost is
increased to one then the policy acts like OA until
today’s bookings reach eleven (capacity plus one) and
then defers demand to the next available appointment
slot. If the lead time cost is further increased to five then
the initial decision to stop booking any new requests
into today is delayed until today’s bookings reach 12

before a series of thresholds on the queue size triggers
additional overbooks.

Recall that the MDP formulation assumes that all
demand for the day was collected before any scheduling
decision is made. However, the form of the policy
makes it a simple matter to translate the MDP policy
into the more realistic setting where demand is sched-
uled as it arrives. As a new request for an appointment
arrives, the booking clerk checks the MDP policy to
determine whether that request should be booked to-
day or delayed based on the look-up tables from the
MDP as if this were the last request of the day. Thus,
in the example described in the previous paragraph, if
the 18th request of the day arrives, it will be booked
into the next available appointment slot but if a 19th
request arrives, it will be booked into today’s slate even
though today’s slate is already full. The negative aspect
of the MDP policy is that now a client who called later
may in fact receive an earlier appointment.

6 Conclusion

The argument behind OA is two-fold. Either (1) the
presence of no-shows has such a debilitating effect on
clinic performance that it is worthwhile to minimize
such occurrences as much as possible by “doing today’s
demand, today” or else (2) the advantage of providing
same-day access is worth the cost. What this paper
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demonstrates is that the impact of no-shows can be
easily mitigated without resorting to OA. A policy that
instead uses a short booking window to smooth out de-
mand can reduce both idle time and overtime substan-
tially and thus improve resource utilization and reduce
costs. The robustness with which the MDP policy main-
tains its advantage over OA across all the scenarios
demonstrates that this superiority is not a function of
the particular parameters used. Even for those clinics
where revenue is dominant and thus higher throughput
is most advantageous, the MDP demonstrates distinct
advantages over OA in that the variation in the day-to-
day workload and the peak work load are significantly
reduced without sacrificing profit.

If a high enough cost is associated with appointment
lead times then clearly OA will eventually become opti-
mal. However, the cost (in resource efficiency) incurred
by the clinic for insuring same-day access as opposed to
using a short booking window can be quite high. This
is not to say that there are not clinics where OA can
be readily implemented but that the trade-offs need
to be clearly understood. The popularity of OA within
the medical community suggests that perhaps they have
not. This research contributes to the growing evidence
provided by the operations research community that,
depending on a clinic’s priorities, open access may in
fact be sub-optimal. The benefit of this research is
to provide an alternative scheduling policy that can
significantly improve resource utilization while only
marginally increasing client appointment lead times.
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